Stock de Recursos de la Economía Chilena

Article ·	February 1999	
Source: RePEc		
CITATIONS	;	READS
10		18
3 author	rs, including:	
	Matías Braun	
	Universidad Adolfo Ibáñez	
	30 PUBLICATIONS 712 CITATIONS	
	SEE PROFILE	
Some of	the authors of this publication are also working on these related projects:	
Project	International View project	

STOCK DE RECURSOS DE LA ECONOMIA CHILENA*

M. Soledad Arellano S.**
Matías Braun Ll.***

ABSTRACT

This paper presents the methodology used to estimate the Chilean stock of human capital, physical capital and natural resources in 1995, including the results obtained. Physical capital stock was estimated based mainly on a direct quantification of different types of capital. It amounted in 1995 to 2.4 times the GDP. Unlike previous studies, natural resources were not estimated based on fiscal valuation but on direct quantification of them. Land's total value and mineral reserves amounted to US\$ 181.033 million and US\$ 17.095 million respectively. Both direct and indirect costs (tuition and fees and foregone earnings) were taken into account to estimate human capital's replacement cost. Using a rate of discount of 10%, human capital stock amounted US\$ 521.661 million (8 times GDP) in 1995. Physical to human capital ratio was in the United States 2.6 times Chilean's ratio. This increased accuracy in the estimation of Chilean resources will be very useful for the empirical estimation of economic growth models and also for quantitative evaluations of the impact of economic policies on growth.

- Los autores agradecen los valiosos comentarios y sugerencias de Juan Braun Ll., Gonzalo Edwards, Erick Haindl, Dominique Hachette, Jaume Ventura y Gert Wagner, así como también de los asistentes a los Seminarios realizados en el Instituto de Economía de la Pontificia Universidad Católica de Chile. Se agradece también el apoyo proporcionado por Empresas CB y la Fundación Mellon durante la realización de esta investigación. Los errores son de nuestra exclusiva responsabilidad.
- ** Economista y Magister en Macroeconomía Aplicada, Pontificia Universidad Católica de Chile. Actualmente se encuentra cursando estudios de doctorado en Economía en el Massachusetts Institute of Technology, Estados Unidos. E-mail: sarellan@mit.edu.
- *** Economista Pontificia Universidad Católica de Chile. Profesor del Instituto de Economía Pontificia Universidad Católica de Chile y Economista Jefe CB Capitales S.A. E-mail: mbraun@cb.cl.

Key words: Human capital stock, physical capital stock, natural resources, Chile. *JEL Classification*: E25, O15, O54

I. Introducción

Sin lugar a dudas, una rama de la ciencia económica de gran importancia y que ha sido objeto de gran atención por parte de los investigadores en los últimos años ha sido la teoría del crecimiento económico. No es difícil darse cuenta de la relevancia que tiene el tema del crecimiento de largo plazo en el bienestar de la población. Al respecto considérese, por ejemplo, que un punto porcentual de crecimiento per cápita adicional al año genera un producto 50% mayor al cabo de 41 años y 170% mayor después de 100 años.

Una característica básica de la nueva ola de estudios sobre el crecimiento es el énfasis que se ha puesto en la evidencia empírica en cuanto a la comprobación de la teoría y a la determinación de los parámetros claves identificados en los modelos. Siguiendo en la misma línea, este estudio tiene por objeto principal aportar los datos necesarios para alimentar los modelos de crecimiento de manera de poder obtener las conclusiones cuantitativas que de ellos se derivan.

El objetivo de fondo este trabajo es estimar el *stock* de recursos y, en consecuencia, la riqueza nacional. Esta información es un ingrediente básico para constatar fenómenos y cuantificar los efectos que diversos modelos de crecimiento predicen para el caso de la economía chilena. Esperamos colaborar de este modo al desarrollo de una discusión seria sobre el crecimiento económico en Chile, con todas las implicancias de política que de ello se derivan.

La cantidad de recursos que posee una economía determina, en conjunto con la tecnología —entendida en su forma más amplia, es decir, incluyendo tanto los aspectos tecnológicos como las instituciones o políticas imperantes—, la producción máxima que es posible obtener en cada momento del tiempo. Estos recursos pueden dividirse en tres grandes grupos:

- a) Recursos Naturales: comprenden todos aquellos bienes que la naturaleza nos provee y que son utilizados sin mayor elaboración en los procesos productivos. Este grupo comprende la tierra y los minerales, el agua, el aire, los peces, etc.
- b) Capital Humano: considera todas las capacidades y conocimientos que posee una persona y que le permiten transformarse en un insumo para la producción. Es capital en el sentido que puede ser acumulado mediante la inversión y, salvo una pequeña depreciación, no desaparece una vez utilizado en los procesos productivos.
- c) Capital Físico: este grupo comprende todos aquellos bienes intermedios que permiten al factor humano transformar los recursos naturales en bienes que pueden ser consumidos directamente por las familias. Este capital, que incluye maquinaria, equipos, edificaciones e infraestructura de todo tipo, se forma sobre la base de inversiones realizadas con anterioridad.

Tanto el capital físico como el humano, a diferencia de los recursos naturales, son a la vez insumo (presente) y producto (pasado) de la economía. El trabajo está dividido en cinco secciones más anexos. En la segunda sección se presenta la estimación del *stock* de capital físico de la economía a fines de 1995 y se comparan los resultados y la metodología con los estudios anteriores en el tema. La tercera sección abarcará la estimación del valor de los recursos naturales. El capital humano comprende la cuarta sección, mientras que la última presenta las principales conclusiones.

II. Capital Físico

Consideraciones metodológicas

El *stock* de capital se define como el valor, en cada momento del tiempo, de los activos de capital que están instalados en los establecimientos de los productores. Estos activos consisten en los variados bienes durables que se incluyen en la formación bruta de capital fijo de Cuentas Nacionales. En general estos bienes son

- durables, permanecen por más de un año,
- tangibles, intangibles como patentes u otros derechos no son considerados,
- fijos, los inventarios y trabajos en proceso son excluidos, no obstante los equipos móviles se consideran y
- reproducibles, se excluyen los recursos naturales.

El stock de capital físico puede estimarse ya sea a través del método indirecto o el directo. El método indirecto recurre a las series de inversión de Cuentas Nacionales acumulando la inversión realizada en cada período y deduciendo el valor de los activos que van siendo descartados principalmente por obsolescencia. Entre las variaciones de éste, se incluye el Método del Inventario Perpetuo o PIM y el de Harberger. El PIM, utilizado por la gran mayoría de los países que publican estimaciones oficiales del stock de capital¹, consiste en una suma ponderada de las inversiones pasadas. Su aplicación no requiere estimar un stock inicial pero sí contar con series de inversión "largas" que, dependiendo de las funciones de supervivencia utilizadas, pueden extenderse por varias décadas. Si las series de inversión no abarcan la totalidad del período requerido, la aplicación del PIM implica estimarlas hacia el pasado. Dado que en la mayoría de los países no desarrollados como Chile, la Contabilidad Nacional es relativamente nueva (generalmente se inicia oficialmente el año 1960), el método es poco atractivo, especialmente para las edificaciones que pueden llegar a contar con una vida útil superior a los 70 años. Es por esta razón que muchas estimaciones del stock de

Al respecto ver OECD (1992).

capital en países subdesarrollados se basan en el método alternativo propuesto por Harberger².

El método de Harberger acumula la inversión y descuenta la depreciación a un *stock* inicial de capital. El *stock* inicial se calcula como el valor actual de una perpetuidad anclada en la inversión "normal" en el año base (corregida de modo que no esté afecta a las condiciones particulares de ese momento o el ciclo económico), utilizando como tasa de descuento la depreciación y suponiendo una determinada tasa de crecimiento histórica del *stock*. Nótese que, si bien esta metodología elimina la necesidad de estimar series pasadas de inversión, de todos modos se requiere estimar el nivel de inversión normal y hacer un supuesto en torno a la tasa de crecimiento del *stock* de capital y de la depreciación, por lo que la posibilidad de error continúa presente. Más aún, dado que se aplica una tasa de depreciación constante al *stock* en cada año, se supone implícitamente que su antigüedad media se mantiene inalterada, lo que introduce un sesgo a la subestimación en las economías que han visto aumentar sus tasas de inversión en el tiempo.

Afortunadamente la importancia de los supuestos utilizados en ambos métodos para determinar el *stock* de capital inicial va disminuyendo a medida que pasa el tiempo y los activos se deprecian. La mayor debilidad de los métodos indirectos es, sin embargo, el uso de series de inversión pasadas y de frágiles supuestos de vida útil y patrones de depreciación de los activos. Respecto de lo primero, aun cuando las series de inversión sean oficiales, no dejan de ser estimaciones, y bastante precarias en algunos casos. Además, con el paso del tiempo se producen cambios en su definición y cobertura que normalmente no son incorporados en los cálculos anteriores, por lo que no se puede asegurar que haya una serie de inversión consistente a través del tiempo, sino muchas series distintas. En cuanto a los supuestos de depreciación y vida útil, pequeños cambios generan efectos de magnitud considerable. Esto cobra mayor importancia por cuanto, finalmente, la depreciación efectiva es difícilmente observable y se recurre a datos contables, información para efectos tributarios o simplemente a "estimaciones propias" de cada autor.

Como alternativa a las metodologías indirectas de estimación del capital físico, se presenta el método directo. Este consiste simplemente en recurrir a la cuantificación física directa de cada tipo de activo y su valoración en base a algún criterio determinado (mencionados más adelante). Sus principales ventajas son: Primero, no requieren en absoluto basarse en las series de inversión de Cuentas Nacionales. Segundo, es posible lograr una mucho mayor desagregación por tipos de bienes de capital que la provista por Cuentas Nacionales. Tercero, no sólo considera la depreciación normal de los activos, sino que también los efectos de desastres naturales, guerras, etc. Por último, no es necesario hacer supuestos "generales" de depreciación, sino que es posible hacer supuestos específicos a cada activo de capital, minimizando la posibilidad de error en la estimación. El princi-

En Chile, por ejemplo, ver Morán y Wagner (1974), Haindl y Fuentes (1986) y Gutiérrez (1987).

pal problema de este método deriva de la necesidad de contar con información confiable sobre la cantidad física de cada activo o tipos de activos de capital, su estado de conservación y valor en algún momento del tiempo. Además, constituye un trabajo de investigación bastante más largo y costoso de realizar año a año. Sin embargo puede constituir un complemento clave a los métodos indirectos al proporcionar el "año base" sobre el cual se acumulará la inversión realizada con posterioridad.

La valoración de los activos de capital puede realizarse, entre otros, en base al valor presente de los flujos futuros que genera el activo en cuestión o a su costo de reposición. El primer método tiene el problema de que, además de requerir una estimación de los flujos futuros, tarea bastante complicada considerando la gran variedad y heterogeneidad de los activos de capital, requiere el uso de una tasa de descuento para ellos. Esto último significa que estaríamos imponiendo a priori una tasa de rentabilidad al capital y su contribución al producto, variables ambas que pretendemos estimar. El segundo método corresponde al valor que habría que pagar por el activo si *quisiéramos* reemplazarlo por otro con exactamente las *mismas características*. Al respecto, es importante tener presente las siguientes consideraciones:

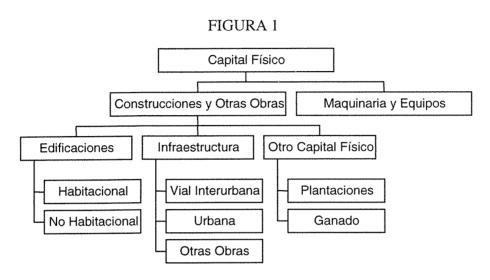
- en el caso de los bienes nuevos es posible recurrir al valor al cual el activo se transa en el mercado, si es que efectivamente existe un mercado para el bien.
- en el caso de los bienes usados, es difícil encontrar en el mercado un activo con exactamente las mismas características del activo en cuestión, por lo que es necesario hacer ajustes en base al valor del activo nuevo. Por otro lado, si es que tal activo sí existe en el mercado, el valor al cual se transa puede diferir del valor productivo. Adicionalmente, es posible que en este caso no se satisfaga el principio de la libre concurrencia por lo que el precio al cual se transa no refleja necesariamente el valor del activo para quien compra o vende³.
- posteriores estimaciones de la rentabilidad del *stock* de capital deben ser interpretadas como la rentabilidad de reponer hoy el *stock*. Nada dice respecto de si es rentable haberlo tenido o si fue rentable la inversión.

Por otro lado, los bienes de capital pueden ser valorados en base a diferentes precios: costo constante de reposición (utilizando los precios de un determinado año), costo corriente de reposición (usando precios corrientes, o del mismo año) o costo histórico (precios prevalecientes en el momento en que se adquirió el bien)⁴. La primera alternativa requiere elegir qué sistema de precios relativos se utilizará en la estimación, esto es, qué año se utilizará como base. Esta decisión no es en ningún caso trivial pues aquellos sectores cuyos precios son relativamente altos en tal período, tendrán un mayor peso en la estimación final. En la medida que el año escogido como base sea un año "normal" y que todos los

Al respecto, ver discusión en Edwards (1988).

⁴ OECD (1992).

activos de capital se estimen usando la misma base, esto no debiera generar problemas ni sesgos en la estimación⁵.


Como ya se mencionó anteriormente, una consideración muy importante al momento de calcular el *stock* de capital tiene relación con el tema de la depreciación, es decir con la disminución en el valor del activo debido al paso del tiempo. Específicamente podemos hablar de depreciación física o económica. La primera corresponde a la declinación en la eficiencia productiva mientras que la segunda considera además otros motivos de pérdida de valor, como puede ser el desarrollo de nuevas tecnologías que dejan obsoletas las anteriores. ¿Cuál de las dos es la más adecuada? Claramente depende de qué es lo que se intenta medir y cuál objetivo es el que se persigue. Así por ejemplo, si lo que se intenta es estimar la capacidad productiva de los recursos, lo más adecuado sería utilizar la depreciación física de los activos. La estimación de la depreciación puede basarse en diversos supuestos sobre su comportamiento temporal, entre los que se encuentran: depreciación lineal, súbita, acelerada y retardada. La función depreciación que debiera utilizarse depende de las características particulares de cada bien.

Una vez revisada la metodología que, en general, puede usarse para estimar el *stock* de capital físico, describimos brevemente cuál es la alternativa escogida en el presente trabajo, así como también algunos de los supuestos básicos:

- el stock de capital físico se estima bajo el supuesto que, a pesar de las inversiones realizadas con el objeto de mantener la productividad de los activos en el tiempo, cada momento que pasa se produce una pérdida de productividad.
- en términos generales, se privilegiará el método directo, con la excepción del *stock* de maquinaria y equipos en que la escasez de información lo hace inadecuado.
- la valoración de los diferentes activos de capital se realizará en base al costo de reposición prevaleciente en 1995, el que se calcula de acuerdo a los criterios ya mencionados, de acuerdo a la disponibilidad de información. En el caso de aquellos bienes en los que no es posible recurrir al mercado para estimar tal valor, se utilizara el costo de producción del bien⁶.
- no se utilizará un supuesto de tasa de depreciación uniforme para todos los activos de capital, sino que se tomará uno específico en cada caso.
- Específicamente en el caso de la estimación que aquí se realiza, podría introducirse un sesgo si es que los precios relativos del año 1986 fueran muy distintos a los de 1995, pues si bien la mayor parte de las estimaciones se realiza en base al año 1995, el *stock* de maquinarias y otras obras se estima en base a información de Cuentas Nacionales y en consecuencia, en base a los precios relativos de 1986. Una situación similar se producirá cuando se comparen nuestros resultados con los de investigaciones anteriores, pues éstas utilizaron una matriz insumo-producto distinta.
- Este es el mismo criterio que utiliza Cuentas Nacionales para estimar el valor de la producción de aquellos bienes que no se transan en el mercado.

Estimación

La estimación del capital físico de la economía chilena se ha desagregado según lo indicado en la Figura 1. Se ha procurado que las categorías más agregadas ("Construcción y Otras obras" y "Maquinaria y Equipos") coincidan con la cobertura que ellas poseen en las series de inversión calculadas por Cuentas Nacionales. Esto con el objeto de hacer comparables las estimaciones y permitir su continuación en el futuro por métodos indirectos.

A. Construcciones y Otras Obras

Edificación Habitacional

Los Censos de Vivienda registran el número de residencias existentes en el país, sin embargo no registran tamaño ni antigüedad de las mismas. Debido a que ambas características son esenciales para obtener el costo de reposición de las estructuras, éstas debieron ser estimadas a partir de la serie de edificación residencial aprobada e iniciada en comunas seleccionadas para el período 1941-1995 producida por el INE⁷. En primer lugar se calculó una serie estimada de número de viviendas existentes en el país desde 1941, utilizando los Censos de 1952, 1960, 1970, 1982 y 1992, e interpolando los años restantes por medio de la serie de nuevas viviendas antes mencionada. Posteriormente, para obtener la superficie total de dichas estructuras se utilizaron los metros cuadrados promedio de las nuevas construcciones registradas desde 1941, suponiendo adicionalmente que las existentes en 1940 contaban en promedio con 150 metros cuadrados construi-

⁷ Esta serie es la de mayor cobertura temporal disponible.

dos (superficie media de las obras construidas entre 1941 y 1945). Ambas series se presentan en el cuadro número 1 del Anexo a este trabajo. De acuerdo a lo anterior, se obtuvo que la superficie de las estructuras habitacionales hacia 1995 correspondía a 331,3 millones de metros cuadrados.

Según el Censo de Población y Vivienda de 1992, del total de las viviendas particulares ocupadas, un 49,2% utiliza ladrillo, concreto o bloque como material principal de construcción de las paredes externas (material sólido), un 41,5% madera o tabique forrado, un 7,7% adobe, y un 1,7% otros materiales ligeros como barro empajado, quincha, desechos, etc. Los materiales de construcción, sin embargo, no representan suficiente caracterización de las viviendas puesto que existen enormes diferencias de calidad dentro de esas categorías según sea el estrato socioeconómico de la familia que las habita. Si bien se cuenta con alguna información oficial del Ministerio de la Vivienda respecto de costos de construcción habitacional, ésta corresponde a casas licitadas para subsidio, lo que la hace poco representativa de las edificaciones existentes en el país. Por este motivo, se utilizó información provista por la empresa Constructora Aconcagua, ligada a inversiones en primera vivienda destinadas a todos los estratos socioeconómicos. De acuerdo a esta empresa los costos por m² edificado en primeras viviendas nuevas de material sólido alcanza a 7 UF para el estrato bajo (40% de las familias), 10,45 UF para el medio-bajo (30%), 19,25 para el medio-alto (20%) y 20 UF para el alto (10%). Dichos costos no incluyen el valor del terreno sobre el que se edifican las viviendas ni las obras de urbanización⁸. Suponemos adicionalmente que las estructuras de madera y adobe tienen un valor de 2/3 y 1/3, respectivamente, del de las de material sólido, y que las de material ligero tienen un costo de reposición igual a cero. El siguiente cuadro resume los valores de las viviendas según sea el estrato socioeconómico de los ocupantes:

CUADRO 1
VALOR VIVIENDAS NUEVAS SEGUN MATERIAL DE CONSTRUCCION
Y ESTRATO SOCIOECONOMICO DE SUS OCUPANTES
(UF/m²)

	Ladrillo	Madera	Adobe
Bajo	7.0	4.7	2.3
Medio-bajo	10.4	7.0	3.5
Medio-Alto	19.3	12.8	6.4
Alto	20.0	13.3	6.7

FUENTE: Elaboración propia en base a información proporcionada por Constructora Aconcagua.

El *stock* de estos activos será estimado en el capítulo de recursos naturales y en la sección de infraestructura urbana, respectivamente.

Adicionalmente, debemos suponer una determinada distribución de las viviendas según sus materiales en cada estrato socioeconómico. Al respecto, se asume que mientras mayor es el ingreso de la familia, mayor es la calidad de los materiales de la vivienda que ocupa. Por ejemplo, las viviendas de concreto o ladrillo son ocupadas por los estratos alto, medio-alto y parte del medio-bajo. La proporción de las familias de estrato medio-bajo que no ocupa las viviendas de primera calidad, ocupa las de madera, y así sucesivamente hasta asignar cada vivienda a un estrato socieconómico. El siguiente cuadro resume los resultados del ejercicio:

CUADRO 2
OCUPACION DE LAS DISTINTAS CATEGORIAS DE VIVIENDAS
SEGUN ESTRATO SOCIOECONOMICO

	Ladrillo	Madera	Adobe
Bajo	0%	74%	100%
Medio-bajo	39%	26%	0%
Medio-Alto	41%	0%	0%
Alto	20%	0%	0%
Total	100%	100%	100%

FUENTE: Elaboración propia.

Multiplicando los valores de las tablas anteriores, obtenemos un costo promedio de 16 UF/m² para las edificaciones de ladrillo, 5,3 UF/m² para las de madera y 2,3 UF/m² para las de adobe. Considerando las proporciones que de cada categoría informa el Censo, obtenemos que el costo de reposición promedio de las viviendas existentes en el país es de 10,2 UF/m².

El valor determinado considera que las estructuras están recién construidas, por lo que debe ser ajustado de manera que refleje la antigüedad que efectivamente poseen. Para ello utilizamos la serie histórica de superficie habitacional calculada más arriba y un supuesto de depreciación geométrica del 2% al año⁹ (vida útil media de 34,3 años)¹⁰. Como resultado, obtenemos que el costo de reposición del total de edificaciones habitacionales existentes en el país es de US\$ 54.654 millones.

Esta tasa de depreciación es muy similar a la utilizada por los países miembros del OECD que publican estimaciones oficiales de *stock* de capital, ver OECD (1992). Tomando el promedio simple del supuesto sobre vida útil de los 10 países con que se cuenta con información, obtenemos una depreciación geométrica promedio de 1,9% anual. Se supone adicionalmente que la superficie habitacional del año 1940 se encontraba depreciada en un 50%.

Es decir, al cabo de 34,3 años, se encuentra depreciada en un 50%.

Edificación No Habitacional

La estimación de la superficie edificada con fines no habitacionales se basó en el cálculo de la superficie habitacional y en una serie de edificación total en el país desde 1980, desglosada en habitacional y no habitacional (esta última incluye dos grupos: Industrias, comercio y establecimientos financieros, y Servicios), publicada por el INE. De esta serie se obtuvo que, en el período 1980-1995, la edificación no habitacional representa un 26.07% de la edificación total (21% para el primer grupo y 5,1% para los servicios). En base a esta razón y a la serie de superficie habitacional, se calculó una nueva serie con el *stock* de superficie edificada no habitacional para el período 1940-1995 (Ver Cuadro 2 en el Anexo 1).

Al igual que en el caso de las estructuras residenciales, no existe información oficial representativa de los costos de construcción comercial e industrial. Para valorar la edificación no habitacional, se supuso un valor de 14,8 UF/m², valor equivalente al promedio entre el de viviendas destinadas a los grupos socioeconómicos medio-bajo y medio-alto, ambos estimados a partir de datos proporcionados por la mencionada empresa constructora. Se supuso una depreciación geométrica del 3% anual¹¹. En base a estos supuestos y contando con la antigüedad del *stock* previamente calculada, se procedió a su valoración utilizando la misma metodología descrita para la edificación habitacional. El valor final para la edificación no habitacional, a fines de 1995, resultó ser de US\$ 21.357 millones, desglosada en US\$ 17.212 millones para la edificación del comercio, industria y establecimientos financieros, y US\$ 4.145 millones para las edificaciones utilizadas por el sector servicios.

Infraestructura Vial Interurbana

Según estudios de la Dirección de Vialidad del Ministerio de Obras Públicas, la red vial interurbana chilena está compuesta de 79.423 kilómetros de carreteras y caminos. La misma oficina categoriza esta red en base al tipo de superficie y al estado de la vía según el Cuadro 3.

Para valorar el *stock* de capital en infraestructura vial se utilizaron estimaciones de costo de los distintos tipos de camino (considerando su estado de conservación) proporcionadas por el Departamento de Estudios de CB Infraestructura, concesionaria de obras de infraestructura vial en Chile y el extranjero, para los distintos tipos de caminos y su estado de conservación. Específicamente, se supuso que el valor por kilómetro de las distintas superficies en buen estado de conservación era de US\$1.020.000 para la mezcla asfáltica, US\$160.000 para el tratamiento asfáltico, US\$1.020.000 para el hormigón, US\$22.000 para el ripio y US\$15.000 para los caminos de tierra. Estos precios promedios incluyen tanto los

Tasa geométrica derivada del promedio simple de los supuestos sobre vida útil de este tipo de estructuras que realizan una muestra de 12 países miembros de la OECD. Ver OECD (1992).

materiales de pavimentación como la preparación de la faja de tierra, el estudio del proyecto, los movimientos de tierra necesarios, los túneles, puentes y pasos a desnivel. No se incluye el valor de la faja de tierra utilizada por los caminos, puesto que ésta forma parte del valor del suelo que se estimará más adelante. En cuanto al estado de conservación, dado que los precios no sólo incluyen la pavimentación, se supuso que el valor de un camino en estado regular y uno en mal estado respecto del mismo camino en buen estado era de 80% y 60% respectivamente. En base a estos supuestos y utilizando la información de la Dirección de Vialidad se concluye que el valor de la infraestructura vial interurbana a fines de 1995 era de US\$ 9.297 millones.

CUADRO 3 RED VIAL INTERURBANA (Kilómetros Lineales)

	Total	Bueno	Malo	Regular
Asfalto	9.116	5.157	2.157	1.802
Mezcla Asfáltica	5.470	3.094	1.294	1.081
Tratamiento Asfáltico	3.646	2.063	863	721
Hormigón	3.835	1.611	1.726	498
Ripio	32.238	4.191	22.244	5.803
Tierra	34.234	1.027	15.405	17.802
TOTAL	79.423	11.986	41.532	25.905

FUENTE: Dirección Nacional de Vialidad.

Infraestructura Urbana

Para la estimación del valor de la infraestructura urbana, esto es, vialidad, plazas y parques e instalaciones de agua, eléctricas y telefónicas, se utilizó básicamente una estimación del INE de la superficie urbana del país con motivo del Censo de 1992 y las series de *stock* de edificación calculadas anteriormente. La superficie urbana para 1995 se estima en base a la variación de la edificación total entre 1992 y 1995. Suponiendo que la razón entre superficie edificada y superficie urbana se mantiene inalterada en el tiempo, se procedió a calcular una serie de *stock* de superficie urbanizada entre los años 1940 y 1995 (Ver Cuadro 3 en el Anexo 1). En consecuencia, se obtiene una superficie urbanizada total de 2.281,7 millones de m².

El costo de urbanizar, calculado a partir de información proporcionada por Constructora Aconcagua e Inmobiliaria Curauma¹², se supuso igual a 0,3 UF/m².

¹²

Dicho valor incluye tanto la micro como la macroinfraestructura urbana y considera los distintas calidades de urbanización. En base a este costo, a la antigüedad de la urbanización y suponiendo nuevamente una depreciación del 3% anual, se obtuvo que el valor total de la infraestructura urbana a fines de 1995 era de US\$ 8.719 millones.

Con el objetivo de estimar qué porcentaje de tal cifra corresponde a vialidad urbana, se estimó la superficie del área urbanizada que corresponde a vialidad. Para ello se usaron los datos existentes para la comuna de Santiago¹³, de cuya superficie total un 15,15% responde a este concepto. El costo de US\$ 360.000 por kilómetro lineal de pavimento, en tanto, se obtuvo a partir de CB Inmobiliaria y de un estudio anterior de Claro y Asociados¹⁴. Al igual que Claro se supuso que la vialidad se compone de pavimento en un 60% y de tierra en un 40%. En base a todo lo anterior y la proyección de la superficie urbana en Chile se llegó a un valor de US\$ 5.157 millones. El valor del resto de la infraestructura urbana plazas, parques, movimientos de tierra, instalaciones, etc. se obtiene por diferencia y alcanza a US\$ 3.562 millones.

Otras Obras de Infraestructura¹⁵

Otras obras de infraestructura no incluidas en la infraestructura vial interurbana o la urbana, son la ferroviaria, de embalses y canales, portuaria y aeroportuaria. En conjunto ellas tienen un valor de reposición de US\$ 9.946 millones. A continuación se presenta un breve detalle de la forma en que se estimó cada partida.

Infraestructura Ferroviaria

De acuerdo al INE, Chile cuenta con 8.192 kilómetros de línea férrea que se descomponen en 6.926 km. de vía principal y 1.266 km. de desvíos (ver Cuadro 4 en el Anexo 1). Es posible sin embargo que, en la práctica, no todas estas vías existan ya que en muchos casos se desarman algunos tramos para reparar otros o simplemente parte de los rieles han sido robados, por lo que vías que aparecen en los mapas no siempre están disponibles en terreno.

El costo de construir un kilómetro de línea varía dependiendo del tipo de terreno en que se haga. La empresa Ferrocarriles del Pacífico (concesionaria del

- Cuaderno de Información Comunal Nº 3, Ilustre Municipalidad de Santiago.
- Algunos motivos por los cuales el costo de la vialidad urbana es menor al de la interurbana son que la estructura de soporte del pavimento es menor, que en general es necesario hacer menores movimientos de tierra y que no requieren de obras de infraestructura más caras como los túneles y los puentes.
- Se agradecen los comentarios y sugerencias de funcionarios de la Dirección de Riego, Dirección de Puertos, Dirección de Aeropuertos y de la Dirección General de Aeronáutica Civil.

transporte de carga entre Caldera y Puerto Montt) estima que esta cifra asciende a US\$ 250.000 en el Valle Central y a US\$ 1 millón en la cordillera. Si a tal valor se agrega el costo de construir puentes y túneles, el costo promedio en Chile bordea-ría los US\$ 800.000 (ninguno de estos precios considera el valor del suelo). Debi-do a que las líneas no son nuevas y su estado de conservación deja bastante que desear, la empresa estima un costo de reposición promedio de US\$ 400.000 por kilómetro para las vías existentes en Chile. En base a lo anterior, el valor de la vía férrea sería en US\$ 3.277 millones.

Infraestructura en Embalses y Canales

Chile cuenta con 33 embalses con fines de regadío construidos por el Estado, encontrándose actualmente en construcción el embalse Puclaro. La capacidad total de ellos alcanza los 3.735 hectómetros cúbicos (hm³). Adicionalmente, existen 3 embalses con fines de generación de energía hidroeléctrica (Peñuelas, Rapel y Colbún) con una capacidad total de 2.334 hm³. (Véanse los Cuadros 5 y 6 en el Anexo 1).

La Dirección de Riego del Ministerio de Obras Públicas estimó en 1993 el valor de reposición para algunos de los embalses existentes. Tal información, sin embargo, no sólo estaba incompleta, sino que además los valores no se estimaron de un modo homogéneo, ya que en algunos casos corresponde al de traspaso de la obra a los regantes, el que no necesariamente coincide con el costo de reposición. Tomando en consideración tales problemas, se utilizó el costo proyectado de la construcción del embalse Puclaro. Este tendrá una capacidad de 200 hm³ con una inversión estimada de US\$ 70 millones, lo que implica un costo de US\$ 350.000 por hm³. Es probable que la construcción de los embalses con fines de generación eléctrica sea más costosa que la de los embalses de riego; sin embargo, debido a la falta de información precisa al respecto, la valoración se realizó utilizando el mismo valor.

En definitiva, se obtiene que el valor de la infraestructura en embalses a costo de reposición llega a US\$ 2.124 millones (US\$ 1.307 en embalses de riego y US\$ 817 en embalses hidroeléctricos). Esta metodología puede ser criticada porque no considera la depreciación que produce el uso y el paso del tiempo (tener presente que algunos embalses datan de 1912), sin embargo el MOP ha desarrollado en los últimos años —especialmente desde 1990— un programa de mantenimiento de canales y embalses que, según ellos, permite suponer que la calidad es similar a la de obras nuevas.

Por otra parte, la Dirección de Riego estima que en el país existen al menos 70 canales construidos por el Estado (Ver Cuadro 7 en el Anexo 1). El catastro entrega información sobre la capacidad y longitud de los 38 principales, la que alcanza a 381 m³/seg. a lo largo de 1.543 kilómetros. De los restantes 32, en 30 se cuenta con la longitud solamente, por lo que suponiendo que su capacidad corresponde al promedio de los canales de la misma región, pudieron ser cuantificados. Los dos últimos canales no se consideraron. En definitiva, y expresando dichas

magnitudes en una sola unidad, podemos cuantificar físicamente la infraestructura canalera en 48,3 mil m³-km./seg.

De manera similar al caso de los embalses, se utilizaron los valores proyectados para un nuevo canal con el objeto de valorizar la infraestructura. En proyecto se encuentra la construcción del Canal Pencahue con una capacidad de 983 m³-km./seg. distribuidos a lo largo de 3 tramos a un costo de UF 1,1 millones. Esto implica un valor de UF 1.119 por m³-km./seg (aproximadamente US\$ 35 mil). Adicionalmente se ha supuesto que los canales considerados no se encuentran depreciados por ser sometidos a mantención regular. La infraestructura canalera del país, entonces, tiene un costo de reposición de US\$ 1.514 millones aproximadamente.

Debe tomarse en cuenta que, por razones de escasez de información, sólo se han tomado los canales matrices estatales existentes, dejando de lado los derivados y los construidos por el sector privado. Ambos factores deberían determinar que el cálculo subestimara el valor de la efectiva infraestructura; sin embargo, consideramos que el error no debiera ser muy importante pues, en primer lugar, la información relevante (para los canales más importantes) está completa y, en segundo lugar, porque los canales privados omitidos no debieran ser demasiado importantes, ya que para construir uno es necesario contar con un derecho de aprovisionamiento del agua y los ríos chilenos ya están prácticamente agotados (para riego). La omisión que sí podría ser importante es la referente a los canales "derivados", ya que si bien éstos tienen una capacidad menor al del canal madre respectivo, en algunos casos son bastante largos.

Infraestructura Portuaria

Hacia 1995 existían en Chile 13 puertos públicos y al menos 23 puertos privados, además de 10 terminales de transbordadores. Se cuenta con información completa solamente para los puertos públicos por lo que los privados, menores en importancia, fueron dejados de lado. La infraestructura portuaria puede ser dividida en la superficie de atraque y las áreas de almacenamiento (cubiertas y no cubiertas). De acuerdo a los manuales de puertos de EMPORCHI, los puertos públicos cuentan con 261.341 m² de superficie de almacenamiento cubierta, 1.021.672 m² descubierta y 142.789 m² de superficie de atraque (Véase el Cuadro 8 en el Anexo 1).

Los costos relacionados con el área de atraque de los puertos no sólo incluyen la construcción de las estructuras ubicadas en la superficie, sino también los de aquellas ubicadas bajo el mar y, en especial, los movimientos de tierra necesarios. En base a información entregada por Puerto Colonial¹⁶, se supuso que por cada m² de superficie de atraque, es necesario incurrir en US\$ 19.000 aproximadamente para habilitar un puerto. Suponiendo que las estructuras han sido mantenidas periódicamente y por lo tanto no están depreciadas,

el valor de las superficies de atraque en los puertos públicos chilenos alcanza los US\$ 2.713 millones.

Las estructuras de almacenamiento ya están incluidas en la estimación de edificaciones no habitacionales, por lo que no serán agregadas en la cuenta otras obras de infraestructura.

Infraestructura Aeroportuaria

Chile cuenta con 37 terminales aéreos, de los cuales 17 son aeropuertos. La infraestructura de un aeropuerto tipo consta de infraestructura vial, plataforma y terminal. Las dimensiones de la mayor parte de estas estructuras fueron obtenidas de un informe preparado por CITRA-OMEGA¹⁷ y de información entregada directamente por la Dirección General de Aeronáutica Civil (DGAC) (Ver Cuadro 9 en el Anexo 1). Tomando en cuenta todos los aeropuertos, sus edificios terminales ocupan una superficie de 28.741 m², la infraestructura vial (incluyendo pistas, rodaje, salidas y márgenes) 3.216.632 m² y la plataforma 360.398 m².

A pesar de que el informe de CITRA presenta estimaciones del costo de reposición por m² de cada tipo de estructura, ellos no fueron utilizados por sugerencia del personal de la DGAC que los consideró muy bajos. Este mismo organismo estima que el costo de construir las pistas alcanza a US\$ 100 por m², incluyendo los movimientos de tierra y el gasto de planificación¹8. Para el valor de la superficie de rodaje, salidas, márgenes y plataforma, se utilizaron las relaciones de costos del estudio de CITRA pero considerando el nuevo valor para las pistas. En consecuencia, a costo de reposición tenemos valores de US\$ 250,8 millones y US\$ 67,3 millones para la infraestructura vial y plataforma respectivamente.

Los edificios terminales aeroportuarios no se incluyen puesto que las edificaciones no habitacionales ya fueron estimadas anteriormente.

[&]quot;Análisis y Revisión Estudios de Prefactibilidad de la Red Aeroportuaria Nacional". Informe Principal preparado por Consorcio CITRA-OMEGA, 1994.

Este costo parece a primera vista muy bajo, sobre todo si se considera que el costo por m² de construir una carretera interurbana es bastante mayor (145.7 US\$ / m²); sin embargo, es importante tener presente que los aeropuertos se construyen generalmente en zonas que son naturalmente planas, por lo que los movimientos de tierra son menores y a que la planificación necesaria para una pista es bastante estándar por lo que el costo también es menor. Como un dato adicional, es conveniente recordar que durante 1996 se destinaron \$ 2.700 millones (US\$ 6.6 millones) a reparar la pista del aeropuerto Mataveri en Isla de Pascua que mide 3.000 m de largo x 35 m. de ancho (135.000 m²) lo que implica un costo de US\$ 48/m².

Otro Capital Físico

La serie de inversión en construcciones y otras obras que calcula Cuentas Nacionales no sólo incluye las edificaciones e infraestructura, sino que también el gasto de capital que se realiza en ciertas actividades agrícolas y ganaderas.

Plantaciones

Cuentas Nacionales sólo considera como inversión en construcciones y otras obras los gastos de capital realizados en silvicultura y en plantaciones frutales y viníferas. Las plantaciones de productos agrícolas tradicionales como el trigo, maíz y remolacha, que en general presentan una rotación menor a un año, no son considerados como capital fijo, sino que se incluyen en la cuenta de inventarios. En consecuencia, en esta sección sólo se estima el *stock* de capital en plantaciones forestales, frutales y viníferas.

Según las estadísticas del Instituto Forestal, los bosques productivos ocupan en el país una superficie de 9.240.723 hectáreas. De esta superficie sólo un 23%, es decir 1.747.523 ha., corresponde a plantaciones forestales, siendo el resto bosque nativo. Las especies más importantes son el pino radiata y el eucalipto, representando en su conjunto más del 92% de las plantaciones. (Ver Cuadro 10 en el Anexo 1).

De forma de no incluir como capital el suelo que sustenta a las plantaciones, la valoración del recurso forestal se calculó como la diferencia entre el precio comercial de una hectárea plantada y una de aptitud forestal pero sin árboles. Al respecto, estimaciones de Forestal Valparaíso indican que la hectárea plantada con eucaliptos o pino radiata, de una edad promedio de 10 años, se transa en aproximadamente US\$ 2.750. Más adelante, en el capítulo de recursos naturales, se estima que el valor de la tierra con aptitud forestal es de US\$ 504/ha. Sustrayendo ambas cifras, obtenemos que el valor de las plantaciones de pino radiata y eucalipto es de US\$ 2.246/ha. Aplicando este costo unitario a las plantaciones de todas las especies, se concluye que el costo de reposición de las plantaciones silvícolas en Chile es de US\$ 3.925 millones. Dadas las restricciones a la explotación del bosque nativo, se considera que su valor es igual a cero.

La misma metodología, es decir, el utilizar el valor comercial neto de la tierra, se ocupó para estimar el costo de reposición de las plantaciones frutales y viníferas.

De acuerdo con el INE, existen en el país cerca de 187 mil ha. con plantaciones frutícolas, de las cuales 151 mil se encuentran en producción y 36 mil en formación. (Ver Cuadro 11 en el Anexo 1). Dado que sobre el 90% de estas plantaciones se ubican en la zona central, se consideró que el suelo que las sustenta es de riego permanente, con un valor de US\$ 1.289/ha. 19. En base a estimaciones de

valores de mercado realizadas por CB Agrícola S.A. se estima que el valor neto del suelo de las plantaciones frutales es de US\$ 7.100/ha. si están productivas y de US\$ 2.400/ha. si están en formación. Esto determina que el costo de reposición de tales plantaciones alcanza los US\$ 1.120 millones.

De las 66.702 ha. de viñas viníferas que reporta ODEPA, 31.774 se ubican en suelos de riego permanente, 22.495 en secano y 12.433 en parronales (Ver Cuadro 12 en el Anexo 1). Se estima que los valores por hectárea netos del suelo para cada tipo son de US\$ 4.570, US\$ 1.140 y US\$ 5.980, respectivamente. De esta manera, el costo de reposición de las viñas para vino es de US\$ 245 millones.

Ganado

La estimación del valor de los recursos ganaderos existentes en Chile considera la población de ovinos, bovinos, equinos y porcinos existente a fines de 1995. Cada uno de ellos fue valorado en base al peso promedio por cabeza y al valor promedio al que se transó el ganado vivo en la Feria El Tattersall del Gran Santiago durante el mismo año. En base a lo anterior, el valor de los recursos ganaderos existentes en 1995 asciende a US\$ 2.092 millones²⁰.

CUADRO 4 RECURSOS GANADEROS

	N°	Peso Promedio kg. / cabeza	Kg. totales	Precio Promedio \$ / Kg.	Valor Mill. US\$ 1995
Bovinos	3.858.258	404,4	1.560.183.079	430,2	1.692
Ovinos	4.516.344	35,3	159.201.126	355,1	142
Equinos	330.776	361,4	119.534.177	295,1	89
Porcinos	1.889.990	86,7	163.767.634	409,9	169

Fuente: Número de cabezas: ODEPA; Precio y peso promedio por cabeza: Revista del Campo, Diario El Mercurio.

B. Maquinaria y Equipos

La estimación directa del valor de máquinas y equipos trae enormes problemas prácticos. No sólo requiere contar con un catastro completo de estos bienes, sino además éste debe desagregar entre una infinidad de distintos tipos y adicionalmente proveer información sobre su estado de conservación o antigüedad. Dado que dicha información no está disponible, la estimación debió ser basada en las series de inversión en máquinas y equipos de Cuentas Nacionales.

Dado que el peso promedio corresponde al de los transados en el mercado y el número de cabezas a las existentes en un momento del tiempo, es posible que el valor apreciado sobreestime el efectivo, pues parte del ganado contabilizado probablemente se encuentra en proceso de engorda.

Basaremos la estimación en el método del inventario perpetuo por ser éste el utilizado por la totalidad de los países miembros del OECD (lo que permite comparaciones más coherentes) y porque, dado que la vida útil de este tipo de capital es relativamente corta, no es necesario extender las series de inversión oficiales hacia el pasado. Dos son los supuestos clave que debemos realizar bajo el método del PIM: la vida útil de los activos de capital y el patrón de depreciación que ellos exhiben.

No existe información confiable sobre la vida útil promedio para los bienes de capital en Chile. Otras estimaciones (incluyendo las incorporadas en Cuentas Nacionales) han utilizado supuestos derivados de las normas de depreciación del Servicio de Impuestos Internos, prácticas contables de las empresas, "estimaciones propias" del autor o sugerencias de expertos. Lo cierto es que todo supuesto al respecto será rebatible en tanto no exista información confiable de fuentes directas. Sin embargo, siempre existe la posibilidad de utilizar los supuestos realizados en los países que publican oficialmente estadísticas de stock de capital físico. Nos inclinamos por esta opción porque tendrá, al menos, la ventaja de hacer comparables las estimaciones y reducir la subjetividad de la elección. OECD (1992) presenta los supuestos de vida útil para distintos tipos de activos que utilizan los países miembros de la organización que publican estadísticas de stock de capital²¹. El rango de variación de los supuestos utilizados por los distintos países sobre vida útil promedio de los bienes de capital es bastante amplio²². Es improbable que tal rango se deba a diferente utilización de los recursos en los distintos países, lo cual confirma que no existe gran acuerdo sobre el tema. Dado esto, utilizamos el promedio simple de los países presentados en el citado estudio. Existe una muestra amplia para dos tipos de bienes: la maquinaria y equipos (excluyendo vehículos) en actividades manufactureras con 24 activos para 14 países, y los vehículos con 8 tipos para 8 países. En ambos casos obtenemos el promedio simple por país para los distintos activos y luego promediamos entre países. Obtenemos una vida útil promedio de 19 años para máquinas y equipos, y de 15,5 años para los vehículos. Suponiendo que maquinaria y vehículos tienen una importancia similar en el stock de capital, se toma el promedio entre ambos, concluyéndose que la vida útil promedio de los activos incluidos en la cuenta maquinaria y equipos alcanza a los 17,25 años.

En cuanto al patrón de depreciación seguimos la opción tomada por Estados Unidos en la reciente revisión de sus estimaciones²³ y suponemos que éste declina geométricamente en el tiempo. Esto, en conjunto con la vida útil asumida, implica una tasa de depreciación promedio anual de 8,4% para este tipo de activos de capital. Se considera que la inversión realizada en un año en particular, no sufre depreciación ese primer año.

Ver tablas 2 a 5.

Así, por ejemplo, para el caso de la maquinaria y equipos (excluyendo vehículos) en actividades manufactureras va desde los 11 años en Japón hasta los 26 años en el Reino Unido.

Ver Katz y Herman (1997).

Tomando las series definitivas de formación bruta de capital fijo en maquinaria y equipos expresada en pesos de 1995, aplicamos las ponderaciones derivadas del supuesto de depreciación. Para cada año, el cargo por depreciación se obtiene multiplicando el cargo del año anterior por uno menos la tasa de depreciación anual. El valor del *stock* neto de capital es igual a la suma de la inversión bruta realizada en el pasado, descontada en la depreciación acumulada. Dicho de otra manera, es la suma de la inversión bruta ponderada por los coeficientes de supervivencia de ésta. El valor obtenido corresponde a US\$ 44.588 millones.

Resumen

El siguiente cuadro presenta los resultados de las estimaciones del *stock* de capital físico con que contaba la economía chilena a fines de 1995:

CUADRO 5 STOCK DE CAPITAL FISICO EN CHILE 1995 (Mill. US\$ de 1995)

Ą	Construcciones y otras obras	111.355
	1. Edificación habitacional	54.654
	2. Edificación no habitacional	21.357
	i) Comercio, industria y establecimientos financieros	17.212
	ii) Servicios	4.145
	3. Infraestructura	27.962
	i) Infraestructura vial interurbana	9.297
	ii) Infraestructura urbana	8.719
	- Vial urbana	5.157
	- Otra infraestructura urbana	3.562
	iii) Otras obras de infraestructura	9.946
	- Ferroviaria	3.277
	- Embalses	2.124
	- Canales	1.514
	- Portuaria	2.713
	- Aeroportuaria	318
	4. Otro capital físico	7.382
	i) Plantaciones	5.290
	- Forestales	3.925
	- Frutícolas	1.120
	- Viníferas	245
	ii) Ganado	2.092
	- Bovino	1.692
	- Porcino	169
	- Ovino	142
	- Equino	89
3	Maquinaria y Equipos	44.588
Stoc	k de Capital Físico Total	155.943

FUENTE: Estimaciones propias, ver texto.

De esta forma, se concluye que el *stock* total de capital físico de la economía alcanzaba, a fines de 1995, a aproximadamente US\$ 156 mil millones de dólares. Un 71% corresponde a Construcciones y Otras Obras, mientras que el 29% restante está formado por Maquinaria y Equipos. En total, el capital constituye 2,39 veces el producto interno bruto del país.

Comparación con estimaciones anteriores

En esta sección se revisan 5 estimaciones anteriores para el capital físico de la economía chilena. Dado que las estimaciones no se refieren al mismo momento del tiempo (la más antigua tiene casi 25 años), para hacer comparables los resultados entre sí y con los de esta investigación, se replicó la metodología usando los mismos supuestos originalmente utilizados por los autores para lograr un *stock* de capital en 1995²⁴. El siguiente cuadro presenta las estimaciones actualizadas en una agregación comparable con la cobertura de las series de inversión de Cuentas Nacionales y la realizada en este trabajo:

CUADRO 6 STOCK DE CAPITAL FISICO EN CHILE 1995: COMPARACION DE DIVERSAS ESTIMACIONES (Mill. US\$ de 1995)

	Morán y Wagner		Haindl y	Gutiérrez	Hofman	Arellano y
	(1974) (1)	(1974) (2)	Fuentes (1986)	(1987)	(1992)	Braun (1998)
Stock construcciones y otras obras	95.891	92.321	90.164	99.757	110.170	111.355
Edificación habitacional	-	-	-	••	41.814	54.654
Construcciones y otras obras no habitacionales	-	_	+	-	68.356	56.701
Stock maquinaria y equipos	48.292	48.274	50.767	44.062	33.514	44.588
Stock de Capital Fijo Total	144.183	140.595	140.931	143.819	143.684	155.943

FUENTE: Estimaciones propias en base a los trabajos señalados.

Aun cuando todas las estimaciones se basan en las series de formación bruta de capital, los distintos supuestos y metodologías dan origen a resultados diferentes. Tanto el primer cálculo de Morán y Wagner (1974, número 1 en el cuadro) como el de Haindl y Fuentes (1986) y Gutiérrez (1987) utilizan el método de Harberger para estimar el *stock* de capital en construcciones y maquinaria. Para el caso de las construcciones, los valores se ubican entre los US\$ 90 y US\$ 100 mil millones aproximadamente. Las diferencias radican principalmente en distintos supuestos sobre depreciación, crecimiento de largo plazo del *stock* de

Dado que las estimaciones realizadas por los otros autores no se basaron en la matriz insumo-producto 1986 sino que en anteriores, esta comparación debe tomar en cuenta la presencia de probables cambios en precios relativos. Este problema será mayor mientras más antigua sea la estimación.

capital y el año base utilizado para calcular el *stock* inicial. Sin embargo, en todos los casos el valor de estas estructuras es inferior al presentado aquí (entre un 8% y un 17%). La segunda estimación de Morán y Wagner (1974) y la de Hofman (1992) utilizan el método alternativo del inventario perpetuo o PIM. Recuérdese que la aplicación de esta metodología implica estimar las series de inversión para los períodos con que no se cuenta con estadísticas oficiales. En ambos casos los autores tuvieron que estimar estas series para períodos anteriores a 1920 lo que, dada la baja calidad de la información disponible, abre las puertas a errores en el cálculo del *stock*. En el caso de Morán y Wagner (1974), se obtiene un valor inferior que en el caso del método de Harberger. Esto estaría indicando que las tasas de inversión estimadas serían muy bajas. El valor calculado por Hofman es prácticamente igual al presentado aquí, si bien la composición de las construcciones es distinta, entregando nuestros cálculos una participación mayor para la edificación habitacional.

Respecto de la maquinaria y equipos, los valores obtenidos anteriormente son bastante similares a los calculados en este trabajo. La única excepción la constituye el caso de Hofman (1992), que estima un valor muy inferior al del resto de los autores. Si bien utiliza el mismo método PIM que en nuestros cálculos, la diferencia se explica por una menor vida útil (15 versus 17,25 años) y el patrón de depreciación lineal con salida simultánea de los activos.

III. RECURSOS NATURALES

Metodología

Los recursos naturales con que cuenta el país constituyen un importante factor productivo. Ellos permiten, junto al capital físico y al capital humano, la producción de bienes y servicios. Dado que los recursos naturales son exógenos o predeterminados (no son generados por inversión pasada), el único método que se puede utilizar para estimar el valor de su *stock* es el directo. Al respecto es importante tener presente que no es correcto valorizar los recursos naturales por medio del precio de mercado puesto que éste equivale (al menos teóricamente) al costo marginal de los recursos "puestos en el mercado", incluyendo el del capital físico y capital humano que hacen posible su extracción, elaboración, distribución, etc. Se debe, en consecuencia, poner especial cuidado en no contabilizar dentro de su valor el costo del capital físico necesario para su utilización así como tampoco los montos destinados a su explotación (plantaciones, ganado, etc.) pues éstos ya fueron considerados en el capital físico.

Estimación

Suelo No Urbano

En base a las estimaciones del Instituto Forestal (1994) se obtuvo que de las aproximadamente 75,7 millones de hectáreas comprendidas en el territorio

continental chileno, un 45% tiene aptitud forestal, un 11% son praderas con aptitud ganadera, un 7% es superficie arable y el restante 37% comprende suelo improductivo como desiertos, altas cumbres, campos de hielo, etc. A su vez, la superficie arable corresponde en un 64,7% a secano, un 23,5% a riego permanente y el resto a riego eventual. (Ver Cuadro 13 en el Anexo 1).

Con la asistencia de ejecutivos de CB Agrícola S.A., se estimó un valor por hectárea de los distintos tipos de suelo: \$300.000 para los de secano, \$4.000.000 para el riego permanente, \$1.500.000 para el riego eventual, \$700.000 para las praderas y \$200.000 para el suelo con aptitud forestal²⁵. Dichos valores no incluyen el valor de los animales y plantaciones que se encuentran sobre ellos. Se supuso que el suelo improductivo tenía un valor económico igual a cero. De esta manera se obtuvo un valor de US\$ 49.621 millones. Debe notarse, sin embargo, que tal cifra sobreestima el verdadero valor de la tierra puesto que incorpora implícitamente además del suelo mismo la infraestructura que los rodea y por la cual normalmente no se realizan pagos directos importantes. Descontando el valor de la infraestructura vial interurbana, de los canales y los embalses de regadío, concluimos que el valor del suelo no urbano en el país es de US\$ 37.460 millones.

Suelo Urbano

Según la estimación que se presenta en la sección de infraestructura urbana, la superficie urbana en el país a fines de 1995 correspondía aproximadamente a 2.281 millones de metros cuadrados. Dicha superficie se encuentra desglosada en 176 ciudades y 211 pueblos según la definición que da el INE a estas categorías.

Para la estimación de su valor se cuenta con un estudio de seguimiento de precio de suelos urbanos realizado por CB Inmobiliaria SA²⁶ en el Área Metropolitana de Santiago, Área Metropolitana Valparaíso, Área Metropolitana Concepción, Antofagasta, Rancagua, Temuco, Valdivia y La Serena²⁷. Dicho estudio estima para cada ciudad, una regresión semilogarítmica que relaciona el logaritmo del precio del suelo con una constante y con la distancia entre el sitio y el centro de la ciudad, basándose en un modelo monocéntrico de valor de suelos. Tomando los resultados de las regresiones y suponiendo que la superficie urbana se distribuye homogéneamente respecto de la distancia al centro (las ciudades tienen forma circular), se procede a estimar el valor por metro cuadrado de la superficie urbana para las 8 mayores ciudades del país. En promedio éste alcanza a US\$ 126,5/m² (aproximadamente 3,7 UF/m²). Para el resto de las ciudades del país se ha supuesto que el precio promedio de los sitios urbanos corresponde a US\$ 34/m² (1UF/m²), es decir, la mitad del valor promedio para las ciudades de

Todos los precios expresados en pesos de 1995.

Empresa ligada a inversiones en primera y segunda vivienda destinadas a todos los estratos socioeconómicos.

²⁷ CB Inmobiliaria (1995).

Temuco, Valdivia y La Serena. El precio de los sitios urbanos en los pueblos se supuso igual a la tercera parte del valor en las ciudades pequeñas, es decir, US\$ 11/ m² (0,3 UF/m²).

No se aplicaron dichos valores unitarios al total de la superficie urbana con que cuenta el país debido a que una proporción de ésta corresponde a territorios ocupados por la infraestructura vial urbana y por áreas verdes que no son susceptibles de ser ocupados en forma particular y, en consecuencia, tienen un valor muy inferior. Dado que la existencia de estas superficies no utilizadas en forma particular permiten la ocupación productiva del resto del territorio urbano, y que no se realizan pagos explícitos por ellas, se supuso que los valores unitarios calculados para los predios que pueden ser ocupados incluyen su costo económico.

Para estimar la superficie en cuestión, se recurrió a cálculos realizados por la Municipalidad de Santiago²⁸. Como se mencionó en la estimación de la infraestructura urbana, un 15,15% de la superficie de esta comuna es utilizada en vialidad (aceras y calzadas). Extrapolando dicha proporción al territorio total de pueblos y ciudades, se obtiene que la superficie utilizada en vialidad es de 345,5 millones de metros cuadrados. En el caso de las áreas verdes, se calcula que la totalidad de las comunas de la ciudad de Santiago mantienen 53,1 millones de m² en la forma de parques privados y públicos, lo que equivale a un 11,5% de su superficie total. A nivel nacional, dicha proporción implica una superficie total en parques de 262,3 millones de m². Restando ambos valores a la superficie urbana del país, se concluye que la superficie susceptible de ser utilizada particularmente alcanza a 1.673,2 millones de metros cuadrados. Aplicando la proporción utilizada promedio a cada pueblo y ciudad obtenemos la superficie a ser valorada en cada caso. Multiplicando los valores por m² estimados previamente por esta superficie, concluimos en un valor total de US\$ 149.386 millones.

Para evitar duplicación, se realizaron dos correcciones al valor determinado. La primera consistió en descontar del valor del suelo urbano, el del suelo no urbano correspondiente a dicha superficie. En segundo lugar se descontó el costo de reposición de la infraestructura urbana. Esto último debido a que prácticamente la totalidad de los predios de la muestra utilizada para esta estimación se encontraban ubicados en zonas ya urbanizadas. Dado que, en general, no se realiza un pago directo por dicha infraestructura, es de suponer que el suelo captura en su precio la externalidad positiva que ella produce. En definitiva, el valor del suelo urbano total existente en el país es de US\$ 143.573 millones.

Finalmente es importante tener presente que si bien el valor del suelo urbano forma parte de la riqueza del país, *no* podemos identificarlo como un factor productivo o un *stock* que pueda generar mayor producción. En efecto, este valor no proviene precisamente de su capacidad de generar flujos productivos en el futuro sino que principalmente de la captura de todas las rentas derivadas de las externalidades urbanas. Es muy probable que la productividad del suelo urbano

sea muy parecida a la del suelo rural. En este sentido, no debiera considerarse para obtener conclusiones acerca de la capacidad productiva o posibilidades de crecimiento de la economía.

Minerales

Las reservas de cobre son, sin lugar a dudas, el mineral más valioso con que cuenta nuestro país. Debido a esto y a la imposibilidad de obtener datos confiables respecto de los demás minerales existentes, se procedió a valorizar solamente el cobre. Según estimaciones del Departamento del Interior de los Estados Unidos (1994), las reservas de cobre "económicamente extraíbles" con la tecnología de que Chile dispone actualmente equivalen a 88 millones de toneladas métricas cobre contenido²⁹.

Dado que lo que se pretende es estimar el valor de las reservas de mineral y no de los demás factores productivos utilizados en su extracción, no es correcto utilizar el costo de producción de la libra de cobre. En consecuencia, se decidió utilizar el valor pagado por el derecho a explotar una determinada zona en la cual se estima que existen reservas. Específicamente se utilizó como base para la estimación el monto pagado por Cyprus Amax Minerals Co. a Codelco Chile por el 51% de la participación en el proyecto minero El Abra. La transacción se llevó a cabo en junio de 1994 y comprendió el pago de US\$ 330 millones. En ese momento se estimó la capacidad de la mina en 225 mil toneladas de cátodos / año y su vida útil en 17 años. En base a esta información se estima que la tonelada métrica de reserva vale US\$ 194.3 y que el valor total de las reservas en Chile es de US\$ 17.095 millones.

Biomasa Marina

Desafortunadamente no se pudo estimar el valor de la biomasa marina por varias razones. En primer lugar, no se cuenta con estimaciones oficiales respecto de la cantidad de peces potencialmente extraíbles. Segundo, realizar una estimación de lo anterior resulta altamente aventurado debido a la muy alta movilidad geográfica de las principales pesquerías y la gran variabilidad de las capturas que anualmente se realizan³⁰. Y tercero, dado que los derechos de propiedad sobre los peces se encuentran, al menos por el momento, precariamente definidos, no existe un valor de mercado para ellos en tanto no se encuentren ya extraídos.

El cobre contenido se estima en base a la ley del mineral, y es aproximadamente igual al peso de la piedra multiplicado por su ley.

Se agradecen los comentarios a este respecto de Pesquera Eperva, funcionarios de la Sociedad Nacional de Pesca, de la Subsecretaría de Pesca y la Gobernación Marítima.

Comparación con estimaciones anteriores

En cuanto a su comparación con las estimaciones presentadas en este trabajo, se decidió no replicar la metodología en los casos en ésta fuera muy dependiente de los supuestos utilizados. En otros casos, la descripción metodológica entregada por los autores no fue suficiente para replicar los cálculos o no se obtuvo acceso a la información primaria utilizada. En definitiva, sólo se pudieron replicar los resultados para el suelo agrícola debido a que en todos los estudios revisados tal estimación se mantuvo constante para el período considerado en cada caso.

Morán y Wagner (1974) calculan el valor de los terrenos agrícolas multiplicando por dos el avalúo del Servicio de Impuestos Internos y descontando un 32% de su valor por concepto de obras de riego y un 28% por la infraestructura vial (que teóricamente están incluidas en el capital fijo por ellos calculado). En base a estos supuestos bastante arbitrarios, se obtiene que el valor del suelo agrícola, actualizado según el deflactor del PIB, es de US\$ 2.558 millones de 1995. Por su parte, Haindl y Fuentes derivan el valor del suelo agrícola en base a una tesis de Roberto Casas sobre el sector agropecuario chileno entre 1950 y 1970. La estimación de Casas, a su vez, se basa en el avalúo de los predios agrícolas del Servicio de Impuestos Internos para 1950, el cual se suma como una constante a sus estimaciones respecto del stock de capital del sector, suponiendo que el precio de la tierra sólo cambia por la mejoras en infraestructura que se le introducen. Los autores estiman finalmente que ese valor, corregido por el deflactor del PIB, se mantiene constante durante el período 1960 a 1984. El valor del suelo agrícola calculado de esa manera se actualiza dando como resultado, hacia fines de 1995, US\$ 2.899 millones de 1995. Gutiérrez (1987) entrega estimaciones de stock de tierra agrícola utilizando la misma fuente que Haindl y Fuentes (Casas 1976) y por lo mismo llega a un resultado prácticamente igual.

En todos los casos, las estimaciones del valor del suelo agrícola son muy inferiores a las obtenidas aquí. Ello se debe básicamente a que, a pesar de las correcciones introducidas, todos toman como punto de partida el avalúo de los terrenos efectuado por el Servicio de Impuestos Internos. Dado que dicha valorización determina el monto de los impuestos a pagar para prácticamente la totalidad de los predios hasta principios de los '80 y gran parte de ellos en adelante, históricamente ha subestimado su verdadero valor. En otro ámbito, sólo el trabajo de Wagner y Morán realiza un esfuerzo para excluir de su estimación el valor del stock de capital asociado a los predios.

IV. CAPITAL HUMANO

El capital humano se compone de todas las capacidades y conocimientos que posee una persona y que le permiten transformarse en un insumo para la producción. Es capital en el sentido que es posible de ser acumulado mediante la inversión y no desaparece una vez utilizado en los procesos productivos (salvo

una pequeña depreciación). Todos aquellos esfuerzos que tengan por objetivo el aumento de la capacidad productiva de una persona se entienden como inversiones en capital humano. Entre éstas cabrían la educación, un curso de computación, gastos en cuidado médico, charlas sobre honestidad y puntualidad, etc. No obstante lo anterior, la educación y capacitación han sido tradicionalmente identificadas como las inversiones más importantes en capital humano.

La estimación que aquí se realiza se basa solamente en el capital humano derivado de la educación formal de las personas y su experiencia laboral, pues no existe información suficiente relativa a la educación informal ni a la capacitación laboral. Tampoco se tomará en cuenta el hecho que determinadas personas puedan no mantener un estado de salud que permita hacer productivo su capital humano. Se supondrá que toda vez que se sucede una enfermedad o accidente, los agentes realizan las inversiones en salud necesarias para mantener su capacidad productiva inalterada.

La estimación del *stock* de capital humano sigue lineamientos muy similares a los utilizados para el capital físico. En efecto, se determinará una cantidad física de capital humano, la que posteriormente será valorada a su costo de reposición. Tanto la cuantificación física como la valorización toman como punto de partida a la encuesta de caracterización socioeconómica Casen realizada por MIDEPLAN a fines del año 1994.

El siguiente cuadro, que se deriva de Casen 94, expone los máximos niveles educativos alcanzados por la población en Chile o, dicho de otra forma, la cantidad física de los distintos tipos de capital humano con que cuenta la economía. Sólo consideramos a los mayores de 15 años en el entendido que los menores no ejercen actividades económicas remuneradas, por lo cual su capital humano no es productivo. Debido a que la encuesta entrega una panorámica de lo que sucedía en noviembre de 1994, fue necesario determinar la situación hacia fines de 1995. Para ello se supuso que la proporción de la población que alcanzaba los distintos niveles máximos de educación no se veía alterada, con lo que se aplicó la tasa de crecimiento de la población a cada categoría.

Una vez que se dispone de la cuantificación física de los distintos tipos o calidades de capital podemos cuantificarlos de acuerdo a sus respectivos costos de reposición. Recordemos que el costo de reposición es aquel valor al cual se podrían adquirir los distintos activos de capital en el estado efectivo en que se encuentran en el presente. En el caso del capital físico la aplicación de este criterio es directa: se estima el monto necesario para adquirir cada activo tomando en cuenta su estado actual de obsolescencia o depreciación. Para aplicarlo en el caso del capital humano, sin embargo, nos encontramos con la dificultad que éste no puede ser transferido sino solamente "arrendado". Dado que no existe un mercado para la transferencia de capital humano, no podemos recurrir a éste para obtener los valores necesarios.

CUADRO 7 MAXIMO NIVEL EDUCACIONAL ALCANZADO: CHILE 1995 (Población mayor a 15 años)

Máximo nivel	Número de personas	% de población de 15 y +
Preescolar	599	0.0%
Básica incompleta	2.092.189	20.6%
Básica completa	1.396.975	13.7%
Diferencial	32.396	0.3%
Media C - H incompleta	2.016.786	19.8%
Media C-H completa	1.836.711	18.0%
Media T-P incompleta	361.615	3.6%
Media T-P completa	428.900	4.2%
Universitaria incompleta	423.417	4.2%
Universitaria completa	547.246	5.4%
Inst. Prof./Centro de Form. Técnica incompleta	210.629	2.1%
Inst. Prof./Centro de Form. Técnica completa	277.606	2.7%
Universitaria de postgrado	25.851	0.3%
Academia y otros	32.627	0.3%
Analfabetos	389.475	3.8%
Respuestas no válidas	105.949	1.0%
Población de 15 años y más	10.178.971	

Fuente: Estimación propia en base a Casen 1994. A fines de 1995.

No obstante lo anterior, podríamos estimar la inversión en educación a precios actuales en que la sociedad tendría que incurrir para generar la cantidad física de cada tipo de capital humano. Actualizando los valores incurridos en distintos momentos del tiempo mediante alguna tasa de retorno alternativa, obtendríamos el costo que implicaría reponer cada unidad de las distintas categorías de capital humano. Aplicar tal metodología tiene, sin embargo, dos problemas importantes. Por un lado, la experiencia laboral que cada agente posee no estaría siendo contabilizada, puesto que estaríamos suponiendo que el capital humano con que cuenta cada uno es, independiente de la experiencia que posea, igual al de un recién egresado del mismo nivel educacional. Esto implica una subestimación importante dado que el ingreso esperado del trabajo se relaciona positivamente (en forma decreciente) con la experiencia y su efecto es de gran magnitud³¹. El segundo problema radica en que aun cuando una persona no tenga ninguna educación formal, siempre tendrá alguna capacidad productiva que puede ser entendida como capital humano y que normalmente denominamos trabajo no calificado. Mientras menor sea el nivel educacional alcanzado, mayor será la proporción de este "capital natural" o "innato" en el capital humano total del individuo. Así, si consideramos solamente la inversión en educación formal, estaremos subestimando el valor relativo de las categorías correspondientes a los niveles educacionales bajos. La subestimación será especialmente importante en el caso de los analfabetos, puesto que ellos derivan la totalidad de su capital humano de esta capacidad innata y de la experiencia laboral, ninguna de las cuales estaría siendo contabilizada.

Una manera de solucionar dichos problemas consiste en expresar las distintas categorías de capital en una unidad de cuenta común que sí sea posible de valorar a costo de reposición. Utilizaremos como unidad de cuenta un universitario recién egresado o sin experiencia laboral. Este grado tiene la ventaja que constituye el último nivel alcanzable (por razones estadísticas no se consideran a los post-grado) por lo que, dada la característica secuencial del sistema educacional, la inversión necesaria para generarlo incluye los costos de generar cada una de las demás categorías. Para determinar la equivalencia en universitarios sin experiencia de los individuos representativos de cada grupo, se usa como ponderador la razón entre sus ingresos del trabajo y los del universitario que recién egresa. Luego, suponiendo que dicha razón es similar a la productividad relativa, habremos realizado una transformación que no altera la capacidad productiva del capital humano estimado.

Hechas estas aclaraciones, procedemos a determinar la relación de ingresos laborales existente entre las distintas categorías. Para aislar las diferencias entre ingresos del trabajo que no se relacionan con diferencias de nivel educacional o experiencia, utilizamos los patrones de ingreso bruto o sociales (incluyendo un ajuste por impuestos e imposiciones a la seguridad social) esperados calculados por Arellano y Braun (1999). Dicho trabajo estima el efecto de la educación en los salarios a partir de los datos de Casen 94 a través de una regresión del logaritmo del ingreso en una constante, la experiencia, experiencia al cuadrado, logaritmo de las horas trabajadas, variables dummy para cada nivel educacional y variables dummy de caracterización (Residente de Santiago, Urbano/Rural y Sexo). En segundo lugar se estima a través de un modelo logit la probabilidad de estar desempleado utilizando las mismas variables explicativas recién mencionadas³². El número de años de experiencia laboral no se incluye en el cuestionario de la encuesta, por lo que se estimó en base a la edad de cada persona y a los años que teóricamente dedicó su tiempo a estudiar (sin repitencia ni períodos intermedios) según el nivel educacional con que cuenta. A continuación se alimentaron las ecuaciones resultantes con las características poblacionales de cada grupo según nivel educacional, obteniendo los patrones de ingreso bruto esperados para cada máximo nivel alcanzado y cada año de experiencia laboral³³.

Utilizando la experiencia promedio de cada grupo se obtiene el salario de un individuo representativo de los distintos niveles educacionales. A modo de

Los resultados de dichas regresiones se incluyen en Arellano y Braun (1999), Cuadros 9 y 7, respectivamente.

En el Anexo 2 se presentan las series de ingresos brutos del trabajo para cada nível educacional.

simplificación y debido a que su escaso número hace las estimaciones menos confiables, las respuestas no válidas, el nivel preescolar y el diferencial se asimilaron a los analfabetos, el nivel academia y otros a educación básica completa y el nivel de postgrado universitario a educación universitaria. A continuación, se expresaron los salarios de los distintos grupos en función del de un universitario sin experiencia. El siguiente cuadro resume el procedimiento y los resultados:

CUADRO 8
CANTIDAD "FISICA" DE CAPITAL HUMANO: CHILE 1995
(Expresado en universitarios sin experiencia equivalentes)

Máximo Nivel	Número de personas	Experiencia media	Remuneración bruta anual 1995	Remuneración relativa	Equivalencia en universitarios sin experiencia
Básica incompleta	2.092.189	30	1.317.281	0.40	830.841
Básica completa	1.429.602	30	1.578.268	0.48	680.196
Media C-H incompleta	2.016.786	17	1.516.543	0.46	922.047
Media C-H completa	1.836.711	19	2.173.870	0.66	1.203.685
Media T-P incompleta	361.615	10	1.423.685	0.43	155.202
Media T-P completa	428.900	14	2.174.773	0.66	281.196
Universitaria incompleta	423,417	8	2.668.298	0.80	340.597
Universitaria completa	573.097	19	5.928.879	1.79	1.024.328
Inst. Prof./Centro de Form. Técnica incompleta	210.629	5	1.899.770	0.57	120.631
Inst. Prof./Centro de Form. Técnica completa	277.606	12	2.898.910	0.87	242.606
Analfabetos	528.418	42	1.029.514	0.31	164.002

Fuente: Estimación propia en base a Casen 1994 y Arellano y Braun (1999). A fines de 1995.

Sumando las cifras de la última columna obtenemos que la cantidad "física" de capital humano en la economía chilena a fines de 1995 era igual a 5.965.331 universitarios sin experiencia equivalentes.

Podemos distinguir dos clases de costos de generar el capital humano educativo:

- Costos directos: incluyen la matrícula, los materiales y, en general, todos los desembolsos monetarios marginales que se generan por el hecho de decidir estudiar en el sistema formal. Incluyen tanto los gastos que debe realizar el estudiante como aquellos que hacen otros para proveerle educación (aporte fiscal, becas, etc.).
- Costos indirectos: ingreso del trabajo sacrificado por el hecho de dedicar el tiempo al estudio en vez de trabajar.

Los costos directos se obtienen de Arellano y Braun (1999), del cual se reproduce el Cuadro 9.

Debido a que la fuente de información distingue sólo entre niveles educacionales completos e incompletos y no en el número de años cursados en cada uno, se asumió que el alumno toma la decisión de si continuar estudiando o bien ingresar al mercado laboral en dos oportunidades en cada nivel educacional: al

comienzo y al momento de transcurrir la mitad del período. El costo alternativo corresponde entonces al ingreso laboral de una persona que posee el nivel educacional inmediatamente inferior o anterior al que se encuentra persiguiendo el alumno. El año en que se toma la decisión, el ingreso corresponde a una persona sin experiencia, al año siguiente se agrega un año de experiencia y así sucesivamente, hasta que se completa el siguiente nivel educacional. Se supuso, además, que los alumnos de educación básica sólo pueden acceder a la alternativa de trabajar durante los últimos dos años (desde los 15 años, correspondiente a 7° y 8° básico). Para los ingresos según nivel y experiencia se utilizan los patrones de ingreso bruto del trabajo estimados más arriba.

CUADRO 9
COSTO DIRECTO "SOCIAL" ANUAL DE LA EDUCACION
\$ noviembre 1994

	Privado	Público	Total	% subsidio
E. Básica	89.450	156.313	245.762	64%
E. Media C-H	208.340	116.661	325,002	36%
E. Media T-P	90.667	169.790	260.457	65%
Universitaria (1)	821.187	509.458	1.330.645	38%
Instituto Prof. (1)	609.201	13.574	622,775	2%
Centro de Form Técnica (1)	550.369	935	551.305	0%
Inst. Prof./Centro de Form. Técnica (2)	569.023	4.304	573.327	1%

- (1) El crédito universitario se dedujo del gasto público porque se supone que a la larga es el estudiante el que lo paga (al menos debería). No hay cifras disponibles al respecto. La parte correspondiente a becas está incluida dentro del gasto público (y deducido en términos per cápita del costo privado universitario) pues es el Estado y no el estudiante quien asume esa parte del costo.
- (2) Ponderado por matrícula efectiva año 93. Fuente: Arellano y Braun (1999).

En consecuencia, los costos directos e indirectos (a fines de 1995) en cada uno de los 17 años que toma generar un nuevo universitario, son los siguientes:

CUADRO 10 COSTO DE REPOSICION DE UN UNIVERSITARIO SIN EXPERIENCIA: CHILE \$ Nov. 1994

Año	Costos directos	Costos indirectos	Total
1	245.762	0	245.762
2	245.762	0	245.672
3	245.762	0	245.762
4	245.762	0	245.762
5	245.762	0	245.762
6	245.762	0	245.762
7	245.762	402.277	648.039
8	245.762	434.424	680.186
9	325.002	508.718	833.720
10	325.002	546.153	871.155
11	325.002	616.072	941.074
12	325.002	659.834	984.836
13	1.330.645	885.876	2.216.521
14	1.330.645	943.025	2.273.670
15	1.330.645	1.264.978	2.595.623
16	1.330.645	1.576.076	2.906.721
17	1.330.645	1.666.615	2.997.260

Fuente: Estimación propia en base a Casen 1994 y Arellano y Braun (1999).

Dado que se incurre en costos, tanto directos como indirectos, en distintos momentos del tiempo, debe considerarse adicionalmente un costo alternativo a los recursos utilizados. Para ello, los costos en que se incurrió en cada año se expresan en valores actuales, aumentándolos por medio de una determinada tasa de descuento³⁴. La siguiente tabla indica el costo de reposición total del capital humano en Chile utilizando distintas tasas de descuento:

CUADRO 11
VALOR DEL STOCK DE CAPITAL HUMANO EN CHILE
(Según tasa de descuento utilizada)

Tasa de descuento	Costo por universitario (US\$ 95)	Stock de capita humano (mill. US\$ 95)
6.0%	71.515	426.610
8.0%	78.882	470.555
10.0%	87.449	521.661
12.0%	97.448	581.308
14.0%	109.156	651.154

Fuente: Estimación propia.

La actualización a \$ de diciembre de 1995 se hizo utilizando el IPC para el caso de los costos directos y el índice de salarios nominales para los costos indirectos.

En base a la definición de capital humano que se entregó al comienzo de esta sección, el *stock* estimado corresponde a *todas* las capacidades y conocimientos de un individuo que le permiten transformarse en un insumo para la producción. Al respecto es conveniente tener presente las siguientes consideraciones:

- el stock estimado corresponde al stock de capital humano existente en Chile en 1995 pero no necesariamente al que estaba en uso en ese momento. Esto es así, pues en los cálculos se consideró el total de la población activa y no sólo al grupo compuesto por los ocupados.
- dado que los conocimientos y capacidades de los individuos pueden ser tanto innatos como adquiridos, es posible desagregar el *stock* de capital humano en base a tal característica. Para ello, se tomó como pago a las capacidades innatas de cada individuo la remuneración que recibe el grupo analfabeto. Posteriormente por diferencia se calculó el pago a las capacidades "adquiridas" de cada grupo educacional³⁵. Siguiendo la misma metodología descrita anteriormente, se estimó que el *stock* de capital humano "adquirido" corresponde a US\$ 420.098 millones usando una tasa de descuento de 10% (80.5% del total del capital humano)³⁶. Ver al respecto el siguiente cuadro:

CUADRO 12 STOCK DE CAPITAL HUMANO "ADQUIRIDO"

Tasa de descuento	Mill. US\$ 1995
6.0%	343,553
8.0% 10.0%	378,943 420,098
12.0% 14.0%	468,132 524,380

Fuente: Estimación propia.

Es importante tener en cuenta, sin embargo, que la distinción que aquí se hace entre capital humano adquirido e innato es puramente para efectos ilustrativos. En efecto, no existe real diferencia entre ellos en términos de capacidad productiva o de valor económico.

Es decir, el pago al capital humano "adquirido" por el grupo educacional "i" corresponde a la diferencia entre la remuneración bruta de tal grupo y la del grupo analfabeto.

El *stock* de capital humano innato corresponde a un 19.5% del total y no un 31%, como se hubiera esperado a primera vista (remuneración relativa del grupo analfabeto con respecto al universitario sin experiencia equivalente). Esto se debe a que dado que la experiencia promedio del resto de los grupos es notoriamente menor (ver al respecto el Cuadro 8) que la de los analfabetos "promedio", la remuneración bruta anual correspondiente a las capacidades innatas también es menor que \$ 1.029.514.

V. Consideraciones Finales

La mayor desagregación del *stock* de capital físico que resulta del método directo de estimación nos permite comparar el *stock* de capital físico por universitario equivalente en Chile y Estados Unidos.

La información sobre el capital físico para la economía norteamericana, que corresponde a los cálculos oficiales del *Bureau of Economic Analysis*³⁷, fue reagrupada para hacerla comparable con la clasificación de activos estimada para Chile³⁸. Para estimar el *stock* de capital humano en Estados Unidos se expresó la cantidad de personas en cada nivel educacional y rango etario publicada por el *Current Population Survey* a marzo de 1996 en términos de universitarios equivalentes sin experiencia, utilizando los salarios relativos de cada grupo en dicha economía publicados en el *Statistical Abstract of the United States 1997*. Se supuso que la categoría chilena de universitario corresponde a la de *Bachelor's*, y que el salario de un universitario sin experiencia es el salario promedio de dicha categoría en el rango de edad de 18-24 años. De esta manera, se concluye que hacia 1995 existían en Estados Unidos 295.363.275 universitarios sin experiencia equivalentes.

CUADRO 13
COMPOSICION DEL STOCK DE CAPITAL FISICO EN CHILE Y ESTADOS UNIDOS
(US\$ por universitario sin experiencia equivalente, "usee")

	Cl	nile	Estados	Unidos		
	Stock por usee	% del total	Stock por usee	% del total	Déficit	
A. Construcciones y otras obras	17.430	70.0%	54.430	82.9%	212%	
1. Edificación habitacional	9.162	36.8%	26.399	40.2%	188%	
2. Edificación no habitacional	3.580	14.4%	14.604	22.2%	308%	
3. Infraestructura	4.687	18.8%	13.428	20.4%	186%	
i) Infraestructura vial	2.423	9.7%	4.796	7.3%	98%	
ii) Otras obras de infraestructura	2.264	9.1%	8.631	13.1%	281%	
B. Maquinaria y Equipos	7.475	30.0%	11.242	17.1%	50%	
TOTAL	24.904	100.0%	65.672	100.0%	164%	

Fuente: Estimación de los autores. Ver texto.

Ver Katz y Herman (1997).

Se consideró que el *stock* de capital relacionado con la Defensa Nacional (un 4,3% del total) no era pertinente para la comparación, excluyéndose del *stock* norteamericano. Tampoco se incluyó el capital chileno en plantaciones y ganado, puesto que no son consideradas en las estimaciones norteamericanas.

Como se ve, la razón capital físico por usee de Estados Unidos es 2.6 veces la chilena. El déficit relativo (expresado en función del capital existente) es bastante mayor en el caso de las estructuras, especialmente en la infraestructura no vial y la edificación no habitacional. Por su parte, el déficit de maquinaria y equipos es significativamente menor.

Dado que la presentación de un modelo de crecimiento va mas allá de los objetivos de este trabajo, no es posible extraer grandes conclusiones a partir de este resultado. Nos conformamos con haber contribuido a la constatación de este hecho, esperando que esto sea suficiente motivación para que, en posteriores investigaciones, se retome este punto y se desarrolle un modelo pertinente que permita no sólo explicar este fenómeno, sino que además nos dé cuenta de las implicancias que esto tiene para el futuro de la economía chilena.

REFERENCIAS

Arellano M.S. y Braun M. (1999), "Rentabilidad de la Educación Formal en Chile". *Cuadernos de Economía*, Vol. 36, N° 107, pp. 685-724.

Banco Central de Chile (1992), "Matriz de Insumo-Producto para la Economía Chile 1986", octubre.

Barro, R. y Sala-i-Martin, X. (1995), Economic Growth, McGraw-Hill, Inc.

CB Inmobiliaria SA (1995), "Precios de Suelo Urbano Ciudades de Chile y Lima, Perú". Mimeo. 4to trimestre.

Consorcio CITRA-OMEGA (1994), "Análisis y Revisión Estudios de Prefactibilidad de la Red Aeroportuaria Nacional". Informe Principal.

Edwards, Gonzalo (1988), "Análisis Inversión en Sector Agrícola, evolución y perspectivas". Estudio CORFO.

Empresa Portuaria de Chile (1994), "Manual de Puertos operados por EMPORCHI"

Gutiérrez M. (1987), "Ahorro Interno y Crecimiento Económico: Un enfoque de Cuentas Nacionales", *Cuadernos de Economía*, Vol. 24, N° 73, pp. 331-357. P. Universidad Católica de Chile, diciembre.

Haindl E. y Fuentes Q. (1986), "Estimación del stock de capital en Chile: 1960-1984", Estudios de Economía Vol. 13, Nº 1. Universidad de Chile, pp. 41-72.

Hofman A. (1992), "International Estimates of Capital: A 1950-1989 Comparison of Latin America and the USA" ECLAC.

Ilustre Municipalidad de Santiago "Cuaderno de Información Comunal Nº 3".

Instituto Forestal (1994), "Estadísticas Forestales".

Instituto Nacional de Estadísticas (1992), "Censo de Población y Vivienda, Chile 1992: Resultados Generales".

Instituto Nacional de Estadísticas (1994), "Estadísticas de Transporte y Comunicaciones". Instituto Nacional de Estadísticas (1994/1995) "Estadísticas Agropecuarias".

Katz A. y Herman S.(1997), "Improved Estimates of Fixed Reproducible Tangible Wealth, 1929-1995", Survey of Current Business, mayo, pp. 69-75.

MIDEPLAN (1996), "Encuesta de Caracterización Socioeconómica Nacional 1994", Departamento de Planificación y Estudios Sociales, junio.

Morán E. y Wagner G. (1974), "Estimación de la Tasa de Retorno del Capital", *Cuadernos de Economía*, Vol. 11, N° 34, pp. 22-32, P. Universidad Católica de Chile, diciembre.

OECD (1992), "Methods used by OECD countries to measure stocks of fixed capital", diciembre.

Statistical Abstract of the United States (1997).

US Department of the Interior, Bureau of Mines (1994), Mineral Commodity Summaries.

ANEXO 1

CUADRO 1 NUMERO DE VIVIENDAS Y SUPERFICIE HABITACIONAL EN CHILE 1940-1995

	Número de viviendas	Superficie habitacional (m ²)		Número de viviendas	Superficie habitacional (m ²)
1940	747.455	111.836.535	1968	1.757.844	210.205.509
1941	768.447	114.982.043	1969	1.814.254	214.094.632
1942	785.996	117.612.369	1970	1.860.111	216.414.061
1943	807.822	121.124.246	1971	2.016.293	226.574.936
1944	831.086	124.535.318	1972	2.080.708	230.482.740
1945	853.276	127.502.891	1973	2.150.948	235.869.976
1946	893.370	132.417.803	1974	2.194.683	239.207.973
1947	926.257	136.516.146	1975	2.218.751	240.557.909
1948	957.269	140.125.662	1976	2.264.088	243.781.939
1949	989.642	144.110.757	1977	2.293.222	245.815.284
1950	1.023.837	148.297.685	1978	2.321.474	247.627.634
1951	1.057.764	152.566.714	1979	2.367.051	250.792.729
1952	1.091.000	156.787.136	1980	2.423.138	254.832.751
1953	1.130.252	161.812.175	1981	2.489.243	258.463.311
1954	1.172.989	167.089.558	1982	2.522.369	260.239.917
1955	1.220.687	172.090.096	1983	2.568.084	262.582.490
1956	1.274.073	176.722.562	1984	2.624.759	265.409.683
1957	1.321.004	181.140.426	1985	2.698.962	269.536.548
1958	1.363.166	184.036.785	1986	2.762.076	273.255.514
1959	1.376.627	184.840.918	1987	2.835.167	277.035.794
1960	1.389.000	185.610.436	1988	2.928.794	282.422.838
1961	1.403.858	186.669.004	1989	3.030.454	288.218.225
1962	1.420.103	187.930.865	1990	3.125.728	293.820.384
1963	1.463.413	191.534.439	1991	3.231.762	300.720.685
1964	1.494.776	193.392.640	1992	3.359.813	308.416.375
1965	1.574.503	198.625.036	1993	3.502.059	316.674.164
1966	1.618.132	201.214.770	1994	3.617.080	323.506.388
1967	1.680.880	205.071.939	1995	3.741.881	331.343.891

FUENTE: Elaboración propia.

CUADRO 2 SUPERFICIE DE EDIFICACION NO HABITACIONAL EN CHILE 1940-1995

	Superficie no habitacional (m²)		Superficie no habitacional (m²)
1940	39.435.692	1968	74.122.465
1941	40.544.858	1969	75.493.844
1942	41.472.361	1970	76.311.719
1943	42.710.716	1971	79.894.637
1944	43.913.525	1972	81.272.603
1945	44.959.947	1973	83.172.245
1946	46.693.039	1974	84.349.286
1947	48.138.192	1975	84.825.300
1948	49.410.977	1976	85.962.154
1949	50.816.197	1977	86.679.150
1950	52.292.588	1978	87.318.219
1951	53.797.928	1979	88.434.292
1952	55.286.130	1980	89.858.881
1953	57.058.054	1981	91.139.085
1954	58.918.960	1982	91.765.550
1955	60.682.245	1983	92.591.586
1956	62.315.741	1984	93.588.508
1957	63.873.563	1985	95.043.719
1958	64.894.875	1986	96.355.097
1959	65.178.427	1987	97.688.096
1960	65.449.774	1988	99.587.671
1961	65.823.045	1989	101.631.234
1962	66.268.001	1990	103.606.662
1963	67.538.690	1991	106.039.840
1964	68.193.927	1992	108.753.486
1965	70.038.970	1993	111.665.340
1966	70.952.159	1994	114.074.513
1967	72.312.271	1995	116.838.165

FUENTE: Elaboración propia.

CUADRO 3 SUPERFICIE URBANIZADA EN CHILE 1940-1995

	Superficie urbanizada (m²)		Superficie urbanizada (m²)
1940	770.122.643	1968	1.447.505.702
1941	791.783.065	1969	1.474.286.763
1942	809.895.877	1970	1.490.258.691
1943	834.079.170	1971	1.560.227.952
1944	857.568.309	1972	1.587.137.663
1945	878.003.444	1973	1.624.234.949
1946	911.848.243	1974	1.647.220.885
1947	940.070.028	1975	1.656.516.743
1948	964.925.683	1976	1.678.717.880
1949	992.367.628	1977	1.692.719.786
1950	1.021.199.425	1978	1.705.199.891
1951	1.050.596.574	1979	1.726.995.201
1952	1.079.659.015	1980	1.754.815.378
1953	1.114.262.166	1981	1.779.815.944
1954	1.150.602.995	1982	1.792.049.908
1955	1.185.037.422	1983	1.808.181.204
1956	1.216.937.260	1984	1.827.649.667
1957	1.247.359.309	1985	1.856.067.859
1958	1.267.304.064	1986	1.881.677.201
1959	1.272.841.437	1987	1.907.708.757
1960	1.278.140.450	1988	1.944.804.731
1961	1.285.429.904	1989	1.984.712.603
1962	1.294.119.260	1990	2.023.289.885
1963	1.318.933.998	1991	2.070.806.364
1964	1.331.729.840	1992	2.123.800.000
1965	1.367.760.881	1993	2.180.664.337
1966	1.385.594.165	1994	2.227.712.028
1967	1.412.155.192	1995	2.281.682.212

FUENTE: Elaboración propia.

CUADRO 4 LONGITUD DE LAS VIAS EN SERVICIO SEGUN FERROCARRIL 1994

			Longitud de vía	
Ferrocarril	Trocha	Vía Ppal	Desvíos	Total
	(m.)	km.	km.	km.
Ferrocarriles del Estado		3.447	744	4.191
Valpo P. Montt y ramales	1,676	3,046	699	3,745
	1,000	195	23	218
Arica - Visviri	1,000	206	22	228
Ferrocarriles particulares				
Antofagasta Boliva	1,000	785	109	894
Chuquicamata	1,430	30	63	93
-	1,000	30	63	93
Tocopilla al Toco	1,067	117	56	173
El Romeral al Puerto Guayacán	1,000	38	6	44
Algarrobo -Planta Pelets	1,000	86	6	92
Potrerillos - D. de Almagro -				
Chañaral - Barquito	1,000	153	47	200
Ferronor	1,000	2.240	172	2.412
Total		6.926	1.266	8.192

Fuente: Estadísticas de transporte y comunicaciones INE, 1994.

CUADRO 5 EMBALSES CONSTRUIDOS POR EL ESTADO

	OBRA		UBICACION	I	Vol.	Valor
		Región	Provincia	P. Serv.	Hm ³	estimado U
1	E. Caritaya	I	Tarapacá	1936	42	487.54
2	E. Conchi	H	El Loa	1974	22	255.38
3	E. Lag. Huasc.	III	Atacama	1912	14	162.51
4	E. Lautaro	Ш	Atacama	1940	28	325.03
5	E. Culimo	IV	Coquimbo	1935	10	116.08
6	E. La Laguna	IV	Coquimbo	1950	40	464.33
7	E. Recoleta	IV	Coquimbo	1951	100	1.160.82
8	E. Cogotí	IV	Coquimbo	1951	150	1.741.23
9	E. La Paloma	IV	Limarí	1967	750	8.706.19
10	E. Orozco	IX	Cautín	-	5,5	63.84
11	E. Huelehueico	IX	Malleco	_	6	69.65
12	E. Lliu Lliu	V	Quillota	1925	2,3	26.69
13	E. Purísima	V	Valparaíso	1931	2	23.21
14	E. Pitama	V	Valparaíso -	1932	2	23.21
15	E. Orozco	V	Valparaíso -	1932	6	69.65
16	E. Lo Ovalle	V	Valparaíso	1932	14	162.51
17	E. Per. Tapih.	V	Valparaíso	1932	12	139.29
18	E. Cerrillos	V	San Antonio	1932	3	34.82
19	E. Aromos	V	Quillota	_	36	417.89
20	E. Cristales	VI	Colchag.	1977	9	104.47
21	E. Con. Viejo	VI	Colchag.	1993	10	116.08
22	E. Lolol	VI	-	1938	6,4	74.29
23	E. Bullileo	VII	Linares	1948	60	696.49
24	Lag. Maule	VII	Talca	1957	1420	16.483.72
25	E. Digua	VII	Linares	1968	220	2.553.81
26	E. Planchón	VII	Curicó	-	73	847.40
27	Tutuvén	VII			15	174.12
28	E. Coihueco	VIII	Ñuble	1971	29	336.64
29	E. Tucapel	VIII	Ñuble	_	0,4	4.64
30	E. Huechún	XIII			30	348.24
31	E. Rungue	XIII	Chacabuco	1964	2,2	25.53
32	E. El Yeso	XIII	Cordillera	1967	255	2.960.10
33	E. Sta. Juana			1995	160	1.857.32
34	E. Puclaro			Proyecto	200	2.321.65
				Total UF		43.354.53
				Total US\$	Mill.	1.30

Fuente: Dirección de Riego y estimaciones propias.

CUADRO 6 EMBALSES CON FINES HIDROELECTRICOS

Obra	Vol. Hm ³	Valor estimado UF
Peñuelas	95	1.102.785
Rapel	695	8.067.741
Colbún	1.544	17.923.154
Total UF		27.093.679
Total US\$ M	fill.	817

Fuente: Estrategia (a partir de información de la Dirección de Aguas) y estimaciones. propias.

CUADRO Nº 7 CANALES CHILENOS CONSTRUIDOS POR EL ESTADO

		Ubicación	<u> </u>	Cap.	Long.	M3-km	Valor
Obra	Región	Provincia	P. serv.	M3/s	Km.		Estimado UF
I C. Azapa	I	Parinacota	1962	2,8	33,0	91	101,55
2 C. Lauca	Ĭ	Parinacota	1966	2.7	28.5	77	86,109
3 C. Catina	I			nd	4.8	bn	nc
4 C. Poroma 5 C. Pachica	I I			nd nd	9.8 11.0	nd nd	nd nd
5 C. Pachica 6 Reg. San Pedro de	II	Antofagasta	1966	1,4	9,8	14	15,353
Atacama	**	, mongana	7,00	*,*	7,67	• •	104000
7 Regadío Calama	H	El Loa	1971	0.3	5.2	2	1,746
8 Reg. Qillog	H	Tocopilla	1973	Nd	7.0	Nd	Nd
9 Reg. Toconao	H			Nd	45.0	Nd	Nd
10 C. Mal Paso	111	Copiapó	1969	3.0	11.0	33	36,928
11 Unificación Pedregal	III	Huasco	1976	0.5	7.5	3	3,777
12 Mejoramiento Valle	111			Nd	7.3	Nd	Nd
Copiapó 13 C.D. Cogoti	IV	Illapel	1970	4.4	30.0	131	146.033
14 C.D. Recole.	iv	Ovalle	1970	2.7	8.0	22	24,171
15 C.D. Punitaqui	īV	Ovalle	1978	1.9	27.0	51	57,406
16 Matriz Paloma	IV			Nd	28.5	Nd	Nd
17 Matriz Culimo	IV			Nd	10.9	Nd	Nd
18 Mauco/1	V	Quillota	1918	4.0	80.0	320	358,087
19 Dren Cabildo	v	Petorca	1974	0.3	18.0		6,043
20 Matriz E. Pitama	V			Nd	14.1	ND	ND
21 Matriz E. Lo Orozco	V			Nd	10.0	Nd	Nd
22 Matriz E. Lo Ovalle	V V			Nd Nd	14.4 20.4	Nd Nd	Nd Nd
23 Matriz E. Los Perales de Tapihue	v			140	20.4	140	110
24 Matriz E. Purísima	v			Nd	16.3	Nd	Nd
25 C. Zambrano	VI	Cachapoal	1977	Nd	1.6	Nd	Nd
26 C. Cocalan	VI	O'Higgins	*	13.0	25.0	325	363,683
27 Reg. Mec. Licancheu	VI			+	18.0	Nd	Nd
28 Reg. Mec Rapel	VI			Nd	2.5	Nd	Nd
29 Reg. Codegua	VI			Nd	0.6	Nd	Nd
 Bocatoma Cachapoal 	VI			Nd	6.0	Nd	Nd
31 Reg. Mec. Lo Miranda	VI			Nd	8.0	Nd	Nd
32 Bocatomas Unidas Río	VI			Nd	10.0	Nd	Nd
Claro de Rengo 33 Tipaume	VI	(Río claro)	1924	2.0	9.1	18	20,366
34 C. Melado	VII	Linares	1930	20.0	36.0	720	805,697
35 C. Maule Sur	VII	Maule	1949	60.0	24.3	1,458	1,631,536
36 C.Maule Norte	VII	Maule	1949	72.0	250.0	18,000	20,142,421
37 C. Melozal	VII	Maule	1949	12,0	37.0	444	496,846
38 C. Per-Niquén	VII	Ñuble	1974	1.2	Nd	Nd	Nd
39 C.M. Digua /2	VII	-	-	15.0	70.0	1,050	1,174,975
40 Perq. Cato.	VII	Linares	-	4.5	12.0	54	60,427
41 C. Putagán	VII	Linares	•	4.0	34.0	136	152,187
42 C. S. Rafael 43 Gatica	VII VII	Talca	-	Nd Nd	9.0 25.5	Nd Nd	Nd Nd
43 Gatica 44 C. Matriz Emb.	VII			Nd	8.5	Nd	Nd
Tutuvén	• • • •				0.5		110
45 C. Coreo	VIII	Laja	1956	0.9	46.8	42	47,133
46 C. Quillailco	VIII	Laja	1957	3.5	7.0	25	27,416
47 C.B.B. Negro	VIII	Bío-Bío	1958	18.0	Nd	Nd	Nd
48 Bío Bío Norte	VIII	Bío-Bío	1937	8-5	32.7	278	311,033
49 C. Antuco	VIII	Laja	1964	0.7	17.0	12	13,316
50 C. Duqueco Cuel	VIII	Bío-Bío	1966	9.0	34.0	306	342,421
51 C. Mat. Emb. Coihueco	VIII VIII	Nuble Arauco	1973 1974	4.5 1.9	6.5 10.0	29 19	32,731 21,261
52 C. Cayucupil53 C.B.B. Sur	VIII y IX	Bío-Bío	1974	45.0	400.0	18,000	20,142,421
54 C. Laja	VIII	Laja	1927	42.0	29.2	1,226	1,372,370
55 C. Quillón	VIII	y.	•	Nd	26.0	Nd	Nd
56 C. Colicheo	VIII			Nd	17.6	Nd	Nd
57 C. Duqueco alto	VIII			Nd	4.0	Nd	Nd
58 C. Pillanlelbún	IΧ	Cautín	1961	3.5	26.0	91	101,831
 C. Imperial 	IX	Cautín	1961	4.5	32.0	144	161,139
60 C. Progreso	IΧ	Cautín	1971	0.2	21.0	4	4,700
61 C. Truf-Truf	IX	Cautib	1974	1.0	7.0	7	7,833
62 C. Perquenco	ix	Cautín Cautíb	1978	4.2	14.0	59	65,799
63 Allipén 64 C Bunga	IX XIII	Chacabuco	1947	15.5 0.5	12.5 5.0	194 3	216,811 2,798
64 C. Runge 65 Chacabuco	XIII	Río Aconcagua	1931	6.0	80.3	482	539,145
66 Colina	XIII	Río Colina	1931	3.0	6.9	21	23,164
67 Matriz E. Huechún	XIII			Nd	13.3	Nd	Nd
68 Matriz E. Rungue	XIII			Nd	3.1	Nd	Nd
69 Reg. El Noviciado	XIII			Nd	2.0	Nd	Nd
70 Rinconada Lo Cerda	XIII			Nd	3.7	Nd	Nd
71 C. Pencahue			Proyecto			983	1,100,000
			Total (UF)				50,218,665
			Total (Mill. USS)				1,514

Fuente: Dirección de Riego y Estimaciones Propias.

CUADRO 8
SUPERFICIE DE LOS PRINCIPALES PUERTOS PUBLICOS

	m^2					
_	Cubierta	Descubiertas	Atraque	Total		
Arica	27.352	231.872	32.371	291.595		
Iquique	9.680	70.065	13.180	92,925		
Antofagasta	18.000	70.801	1.852	90.653		
Coquimbo	6.250	58.000	8.694	72,944		
Valparaíso	114.595	85.463	23.070	223.128		
San Antonio	13.910	144.332	27.110	185.352		
Talcahuano/San Vicente	41.914	149.120	19.035	210.069		
Puerto Montt	7.200	59.538	8.963	75.701		
Chacabuco	4.440	44.680	2.458	51.578		
Punta Arenas	18.000	70.801	1.852	90.653		
Puerto Natales		17.000	53	17.053		
Punta Arenas 2	-	20.000	4.152	24.152		
Total	261.341	1.021.672	142.789	1.425.802		

Fuente: Manual de los Puertos operados por EMPORCHI, 1994.

CUADRO 9 SUPERFICIE RED DE AEROPUERTOS

				Edificio Terminal		Rodaje	Salidas	Márgenes	Plataforma
	Ciudad	Aeropuerto	Sup Util	Sup. Total	~~	-			
1	Arica	Chacalluta	2.198	2.198	97.830	77.700	3.375	33,670	20.000
2	Iquique	Diego Aracena	750	750	105,750	64,400	6.210	98.100	22.050
3	Calama	El Loa	370	370	86.670	-	2.300	1,500	10.000
4	Antofagasta	Cerro Moreno	4.487	4.487	129.950	54.740	12.788	73,202	36.010
5	Copiapó	Chamonate	595	595	46.480	-	3,888		10.800
6	Isla de Pascua	Mataveri		~	150.750	3.220	14.700	-	-
7	La Serena	La Florida	338	338	87,210	-	1.656	644	18.900
8	Santiago	A. Merino Benítez	-	12.000	190.850	142.000	20.700	-	60.077
9	Santiago	Cerrillos	-		105.390	50.800	11.500		
10	Chillán	Gral. B. O'Higgins	-	-	41.875	-	1.500	700	3.721
11	Concepción	Carriel Sur	1.664	1.664	103.500	56.764	7.245	24.680	20.000
12	Los Angeles	María Dolores	351	751	45.000	_	7.200		10.000
13	Temuco	Maquehue	511	911	76.500	-	7.200	_	11,500
14	Valdivia	Pichoy	380	380	76.500	_	14.260		21.859
15	Osorno	Cañal Bajo	576	576	61.200	-	10.800		8.000
16	Puerto Montt	El Tepual	885	885	119.250	67.850	10,350	20.650	55,000
17	Coyhaique	Tte. Vidal	542	542	94.410	*	5.980	-	12,000
18	P. Arenas	Pdte. Carlos Ibáñez del Campo	2.294	2,294	407,465	46.575	7.360	78,075	35,490
19	Puerto Williams	Puerto Williams	-	-	43.200	1.260	-	-	5,000
20	Balmaceda	Balmaceda	-	-	94,410	6,900	_	~	2.000
	Total		15.941	28.741	2.164.190	572.209	149.012	331.221	360.398

Fuente: Análisis y Revisión de Estudios de Prefactibilidad de la Red Aeroportuaria

CUADRO 10 RECURSOS FORESTALES

	ha. (dic. 1994)
Bosque Nativo	7.493.200
Plantación Forestal	1.747.523
Pino Radiata	1.375.886
Eucalipto	238.312
Atriplex	47.232
Tamarugo	20.622
Pino Oregón	12.379
Alamo	3.798
Algarrobo	3.238
Otras especies	46.056
Total	9.240.723

Fuente: Estadísticas Forestales 1994, INFOR.

CUADRO 11 PLANTACIONES FRUTALES SEGUN ESPECIE 1994 / 95

Especie	En formación	En producción	Total	
Almendro	1.590	3.710	5.300	
Ciruelo Japonés y Europeo	4.020	8.660	12.680	
Damasco	340	2.270	2.610	
Duraznero	3.120	11.860	14.980	
Guindo Dulce	580	2.330	2.910	
Kiwi	320	8.660	8.980	
Limonero	1.700	6.020	7.720	
Manzano Rojo	4.530	15.220	19.750	
Manzano Verde	1.080	6.570	7.650	
Naranjo	1.470	7.160	8.630	
Nectarino	1.840	6.480	8.320	
Nogal	1000	5.140	6.140	
Palto	4.600	7.990	12.590	
Peral	2.790	9.490	12.280	
Vid de Mesa	4.800	43.210	48.010	
Otros Frutales	2.230	6.630	8.860	
TOTAL	36.010	151.00	187.410	

Fuente: Estadísticas Agropecuarias INE 1994 / 95.

CUADRO 12 SUPERFICIE CON VIÑAS VINIFERAS 1994/95

	На.		
Riego	31.774		
Secano	22.495		
Parronales	12.433		
Total	66.702		

Fuente: ODEPA.

CUADRO 13 COMPOSICION DEL SUELO NO URBANO (Miles de hectáreas)

	Superficie				
Superficie Arable	5.480				
Secano	3.546				
Riego permanente	1.289				
Riego eventual	645				
Praderas	8.199				
Suelo Forestal	33.800				
Improductivo	28.223				
SUPERFICIE TOTAL	75.703				

Fuente: Estadísticas Forestales 1994.

ANEXO 2

PERFILES DE INGRESO BRUTO MENSUAL POR NIVEL EDUCACIONAL

\$ Nov. 1994

EXP	EBI	EBC	ÉMCHI	EMCHC	EMTPI	EMTPC	EUI	EUC	EIPCFTI	EIPCFTC	EUP	RESTO
0	40,228	50,872	61,607	88,588	71,614	102,886	153,050	276,427	125,460	149,267	273,289	26,245
1	43,442	54,615	65,983	94,302	76,644	109,083	162,165	288,951	132,197	157,575	283,655	28,800
2	46,643	58,326	70,316	99,945	81.622	115,198	171,158	301,397	138,851	165,775	294.087	31,385
3	49,816	61,994	74,593	105,508	86,535	121,226	180,024	313,766	145,422	173,866	304,571	33,984
4	52,953	65,610	78,807	110,986	91,375	127,165	188,760	326,057	151,910	181,848	315,095	36,582
5	56,044	69,169	82,954	116,376	96,137	133,012	197,363	338,267	158,314	189,719	325,643	39,166
6	59,084	72,666	87,027	121,674	100,815	138,766	205,832	350,389	164,635	197,480	336,199	41,724
7	62,069	76,097	91,026	126,879	105,407	144,427	214,164	362,414	170,870	205,129	346,746	44,248
8	64,993	79,461	94,946	131,990	109,910	149,992	222,358	374,334	177,018	212,663	357,265	46,731
9	67,856	82,754	98,786	137,004	114,322	155,460	230,411	386,136	183,075	220,080	367,737	49,165
10	70,654	85,976	102,545	141,920	118,640	160,828	238,319	397,807	189,038	227,374	378,144	51,547
11	73,386	89,125	106,220	146,734	122,864	166,093	246,077	409,330	194,903	234,542	388,465	53,873
12	76,050	92,199	109.809	151,445	126,989	171.252	253,680	420,691	200,662	241,576	398,678	56.138
13	78,643	95,195	113,310	156,048	131,014	176,299	261,121	431,871	206,310	248,469	408,764	58,341
14	81,165	98,112	116,721	160,539	134,936	181,231	268,392	442,851	211,841	255,215	418,700	60,479
15	83,613	100,947	120,038	164,915	138,751	186,041	275,486	453,614	217,246	261,803	428,465	62.550
16	85,985	103,698	123,258	169,170 173,299	142,455 146,045	190,724 195,273	282,393 289,104	464,137 474,402	222,518	268,225 274,471	438,037 447,395	64,552
17	88,279 90,493	106,363 108,936	126,379 129,395	173,299	149,516	193,273	295,609	484,388	227,648 232,627	280,530	456,515	66,483 68,341
18 19	90,493	111,417	132,303	181,156	152,863	203,942	301,897	494,073	237,448	286,393	465,377	70.124
20	94,668	113,801	135,100	184,872	156,082	203,942	307,957	503,437	242,099	292,049	473,960	71,830
21	96.625	116,084	137,780	188,438	159,168	211,991	313,779	512,459	246,573	297,486	482,241	73,458
22	98,490	118,264	140,339	191,848	162,115	215,766	319,351	521,118	250,860	302,694	490,201	75,004
23	100,261	120,336	142,773	195,096	164.918	219,363	324,663	529,395	254,951	307,662	497,820	76,468
24	101,935	122,297	145,078	198,174	167,573	222,775	329,702	537,269	258,837	312,380	505,077	77.847
25	103,509	124,143	147,249	201,077	170,073	225,996	334,460	544,721	262,509	316,836	511,955	79.138
26	104,979	125,870	149,281	203,799	172,415	229,019	338,924	551,732	265,959	321,021	518,434	80,340
27	106,344	127,475	151,171	206,333	174,593	231,835	343,085	558,285	269,178	324,925	524,499	81,451
28	107,600	128,954	152,914	208,673	176,601	234,439	346,933	564,364	272,159	328,538	530,132	82,468
29	108,744	130,304	154,505	210,815	178,436	236,825	350,458	569,952	274,893	331,851	535,318	83,390
30	109,773	131,522	155,942	212,753	180,093	238,985	353,651	575,034	277,375	334,856	540,044	84,214
31	110,686	132,605	157,221	214,481	181,568	240,915	356,505	579,596	279,597	337,545	544,296	84,937
32	111,479	133,549	158,337	215,995 217,290	182,857	242,610	359,011	583,627	281,553	339,911	548,063	85,559
33 34	112,151	134,352	159,289 160,072	217,290	183,955 184,860	244,064 245,273	361,163 362,953	587,115 590,049	283,239 284,648	341,946 343,645	551,334 554,100	86,078 86,490
35	112,698	135,011 135,524	160,684	219,211	185,568	246,233	364,376	592,422	285,776	345,002	556,353	86,796
36	113,413	135,889	161,123	219,830	186,077	246,942	365,427	594,225	286,620	346,014	558,087	86,992
37	113,577	136,104	161,386	220,217	186,384	247,395	366,102	595,454	287,177	346,675	559,297	87,078
38	113,609	136,168	161,472	220,369	186,487	247,590	366,396	596,103	287,443	346,983	559,979	87.051
39	113,509	136,078	161,379	220,285	186,384	247,526	366,308	596,170	287,418	346,935	560,131	86,911
40	113,275	135,833	161,105	219,963	186,073	247,200	365,834	595,653	287,099	346,529	559,753	86,655
41	112,906	135,432	160,648	219,402	185,553	246,612	364,974	594,551	286,487	345,765	558,846	86,283
42	112,401	134,875	160,009	218,601	184,822	245,761	363,725	592,867	285,579	344,642	557,411	85,793
43	111,758	134,160	159,186	217,560	183,880	244,646	362,089	590,601	284,378	343,159	555,452	85,183
44	110,977	133,286	158,178	216,277	182,726	243,268	360,064	587,759	282,884	341,318	552,976	84,453
45	110,056	132,253	156,985	214,752	181,359	241,627	357,652	584,345	281,097	339,120	549,988	83,601
46	108,996	131,060	155,606	212,986	179,779	239,724	354,853	580,364	279,021	336,566	546,495	82,626
47	107,794	129,707	154,040	210,979	177,984	237,558	351,669	575,825	276,656	333,659	542,509	81,526
48	106,450	128,192	152,287	208,731	175,976	235,131	348,100	570,735	274,004	330,400	538,038	80,299
49	104,964	126,515	150,347	206,241	173,751	232,444	344,149	565,104	271,069	326,792	533,095	78,945
50	103,332	124,676	148,218	203,510	171,311	229,498	339,817	558,940	267,853	322,838	527,692	77,462
51	101,555	122,672	145,899	200,538	168,653	226,293 222,829	335,105 330,013	552,254	264,358	318,539	521,843	75,848 74,103
52	99,631	120,502 118,166	143,389 140,687	197,324 193,866	165,777 162,681	219,107	324,542	545,057 537,358	260,587 256,541	313,898 308,917	515,564 508,869	74,103
53 54	97,557 95,333	118,100	137,791	193,800	159,362	215,126	318,692	529,170	252,223	308,917	501,776	70,211
55	92,956	112,984	137,791	186,217	155,819	210,885	312,461	520,501	247,633	297,937	494,301	68,064
56	92,936	110,135	131,406	182,020	152,048	206,382	305,847	511,363	247,033	291,937	486,462	65,783
57	87,737	107,110	127,912	177.571	148,046	200,582	298,847	501,763	237,641	285,600	478,277	63,367
58	84,891	103,908	124,213	172.867	143,810	196,581	291,457	491,710	232,237	278,919	469,766	60,821
59	81,887	100,525	120.307	167,904	139,336	191,276	283,670	481,210	226,559	271,891	460,946	58,147
60	78.724	96,960	116,190	162,676	134,622	185,695	275,480	470,267	220,603	264,512	451,836	55,352
1917	10,144	20,200	110,120]	102,010	1.04.044	100,02J	#1J+T0U	710,407	L 220,003	2079,014	403,000	البرانيان الماران

Fuente: Arellano y Braun (1999).